

• Table of Contents

• Index

Enterprise SOA: Service-Oriented Architecture Best Practices

By Dirk Krafzig, Karl Banke, Dirk Slama

Publisher: Prentice Hall PTR

Pub Date: November 09, 2004

ISBN: 0-13-146575-9

Pages: 408

Enterprise SOA presents a complete roadmap for leveraging the principles of Service-Oriented
Architectures to reduce cost and risk, improve efficiency and agility, and liberate your organization from
the vagaries of changing technology.

• Benefit from the lessons of four enterprise-level SOA case studies from Credit Suisse, Halifax Bank
of Scotland, and other world-class enterprises

• Make your business technology independent and manage infrastructure heterogeneity by focusing
on architecture, not specific implementation techniques

• Recognize the technical and nontechnical success factors for SOA in the enterprise

• Define and communicate the economic value proposition of an SOA

• Apply pragmatic design principles to solve the problems of data and process integrity in an SOA
environment

Whether you're a manager, architect, analyst, or developer, if you must drive greater value from IT
services, Enterprise SOA will show you howfrom start to finish.

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

• Table of Contents

• Index

Enterprise SOA: Service-Oriented Architecture Best Practices

By Dirk Krafzig, Karl Banke, Dirk Slama

Publisher: Prentice Hall PTR

Pub Date: November 09, 2004

ISBN: 0-13-146575-9

Pages: 408

 Copyright

 Praise for Enterprise SOA

 The Coad Series

 Acknowledgments

 About the Authors

 Dirk Krafzig

 Karl Banke

 Dirk Slama

 Foreword

 Reader's Guide

 Who Should Read This Book

 A Roadmap for This Book

 Chapter 1. An Enterprise IT Renovation Roadmap

 Section 1.1. Agony Versus Agility

 Section 1.2. Enterprise Software Is a Different Animal

 Section 1.3. The Importance of Enterprise Software Architectures

 Section 1.4. The Requirements for an Enterprise Software Architecture

 Section 1.5. The Relation of Enterprise Architecture and Enterprise Standards

 Section 1.6. Organizational Aspects

 Section 1.7. Lifelong Learning

 Section 1.8. The Enterprise IT Renovation Roadmap

 Chapter 2. Evolution of the Service Concept

 Section 2.1. Milestones of Enterprise Computing

 Section 2.2. Programming Paradigms

 Section 2.3. Distributed Computing

 Section 2.4. Business Computing

 Section 2.5. Conclusion

 Chapter 3. Inventory of Distributed Computing Concepts

 Section 3.1. Heterogeneity of Communication Mechanisms

 Section 3.2. Communication Middleware

 Section 3.3. Synchrony

 Section 3.4. Interface Versus Payload Semantics

 Section 3.5. Tight Versus Loose Coupling

 Section 3.6. Conclusion

 Part I. Architectural Roadmap

 Chapter 4. Service-Oriented Architectures

 Section 4.1. What Is a Software Architecture?

 Section 4.2. What Is a Service-Oriented Architecture?

 Section 4.3. Elements of a Service-Oriented Architecture

 Section 4.4. Conclusion

 Chapter 5. Services as Building Blocks

 Section 5.1. Service Types

 Section 5.2. Layers on the Enterprise Level

 Section 5.3. Conclusion

 Chapter 6. The Architectural Roadmap

 Section 6.1. The Architectural Roadmap

 Section 6.2. Fundamental SOA

 Section 6.3. Networked SOA

 Section 6.4. Process-Enabled SOA

 Section 6.5. Conclusion

 Chapter 7. SOA and Business Process Management

 Section 7.1. Introduction to BPM

 Section 7.2. BPM and the Process-Enabled SOA

 Section 7.3. Conclusion

 Chapter 8. Managing Process Integrity

 Section 8.1. Data Versus Process Integrity

 Section 8.2. Technical Concepts and Solutions

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Section 8.3. Recommendations for SOA Architects

 Section 8.4. Conclusion

 Chapter 9. Infrastructure of the Service Bus

 Section 9.1. Software Buses and the Service Bus

 Section 9.2. Logging and Auditing

 Section 9.3. Availability and Scalability

 Section 9.4. Securing SOAs

 Section 9.5. Conclusion

 Chapter 10. SOA in Action

 Section 10.1. Building Web Applications

 Section 10.2. Enterprise Application Integration

 Section 10.3. Business-to-Business

 Section 10.4. Fat Clients

 Section 10.5. Designing for Small Devices

 Section 10.6. Multi-Channel Applications

 Section 10.7. Conclusion

 Part II. Organizational Roadmap

 Chapter 11. Motivation and Benefits

 Section 11.1. The Enterprise Perspective

 Section 11.2. The Personal Perspective

 Section 11.3. Conclusion

 Chapter 12. The Organizational SOA Roadmap

 Section 12.1. Stakeholders and Potential Conflicts of Interest

 Section 12.2. The Organizational SOA Roadmap

 Section 12.3. Four Pillars for Success

 Section 12.4. An Ideal World

 Section 12.5. The Real WorldOrganization-Wide Standards

 Section 12.6. Recommendations for the SOA Protagonist

 Section 12.7. Conclusion

 Chapter 13. SOA-Driven Project Management

 Section 13.1. Established Project Management Methodologies

 Section 13.2. SOA-Driven Project Management

 Section 13.3. Configuration Management

 Section 13.4. Testing

 Section 13.5. Conclusion

 Part III. Real-World Experience

 Chapter 14. Deutsche Post AG Case Study

 Section 14.1. Project Scope

 Section 14.2. Implementation

 Section 14.3. Technology

 Section 14.4. Lessons Learned, Benefits, and Perspectives

 Chapter 15. Winterthur Case Study

 Section 15.1. Project Scope

 Section 15.2. Implementation

 Section 15.3. Technology

 Section 15.4. Lessons Learned, Benefits, and Perspectives

 Chapter 16. Credit Suisse Case Study

 Section 16.1. Project Scope

 Section 16.2. Implementation

 Section 16.3. Technology

 Section 16.4. Lessons Learned, Benefits, and Perspectives

 Chapter 17. Halifax Bank Of Scotland: IF.com

 Section 17.1. Project Scope

 Section 17.2. Implementation

 Section 17.3. Technology

 Section 17.4. Lessons Learned, Benefits, and Perspectives

 Index

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright
The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Publisher: John Wait

Editor in Chief: Don O'Hagan

Executive Editor: Paul Petralia

Editorial Assistant: Michelle Vincenti

Marketing Manager: Chris Guzikowski

Cover Designer: Jerry Votta

Managing Editor: Gina Kanouse

Project Editor: Christy Hackerd

Copy Editor: Benjamin Lawson

Indexer: Lisa Stumpf

Compositor: Mary Sudul

Manufacturing Buyer: Dan Uhrig

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U. S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data:

2004110321

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

Text printed in the United States on recycled paper at Phoenix BookTech in Hagerstown,
Maryland

First printing, November, 2004

Dedication
I dedicate this book to my familymy wife Petra, my kids David and Johanna, and my
parents. Without them, this book would not have been possible.

Dirk Krafzig

I dedicate this book to all who helped me along the road with their patience, dedication,
faith, and inspiration: my teachers, my colleagues, my customers, my partners at iternum,
my parents, and my beloved Sima.

Karl Banke

For Olli, who decided to write screenplays instead.

Dirk Slama

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.phptr.com
http://www.processtext.com/abcchm.html

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Praise for Enterprise SOA
"As we started with the development of the e-Platform at the Winterthur, we knew that
there were still many questions to be answered. Today, we can look back at a process,
which has created the corresponding architectural guidelines, processes, and infrastructure
components. In the meantime, we are reaping the benefits of our strategy and are
transferring, step by step, our traditional application landscape into a loosely coupled SOA.
This forms, as well, the basis for our next step in the direction of Business Process
Management. This book clearly describes the many concepts that we painstakingly
developed at that time and answers the most important questions that are encountered on
the way to an adaptable application landscape for large-scale enterprises. From my point of
view, this is a book that should be read by all those who are considering remodeling their
application landscape."

Daniele Lisetto, Head Technical and Application Platforms, Winterthur Group

"Enterprise SOA provides strategies that help large enterprises to increase the agility of
their IT systemsone of the most pressing issues of contemporary IT. Covering both a
business and architectural view, these strategies aim to promote the implementation of an
IT infrastructure that can serve as a base for the development of truly flexible business
processes. This book covers its subject with great profoundness based on real-world
evidence. It is in the interest of everybody involved with software architectureparticularly
for anybody who intends to establish a Service-Oriented Architectureto read this book."

Dr. Helge Heß, Director Business Process Management, IDS Scheer AG

"The SOA principles described in this book are the foundation on which enterprises can
build an IT architecture that will satisfy today's most important IT requirementsagility and
flexibilityat affordable costs."

Martin Frick, Head of IT, Winterthur Group

"By delivering SAP's next-generation applications based on a Service-Oriented
Architecture, SAP is at the forefront of making Web services work for the enterprise. The
Enterprise Services Architecture enables unprecedented flexibility in business process
deployment, allowing companies to execute and innovate end-to-end processes across
departments and companies, with minimum disruption to other systems and existing IT
investments. This strategy comes to life with SAP NetWeaver, which is the technological
foundation of the Enterprise Services Architecture. It provides easy integration of people,
information, and systems in heterogeneous IT environments and provides a future proof
application platform. Enterprise SOA provides readers with the architectural blueprints and
SOA-driven project management strategies that are required to successfully adopt SOA on
an enterprise level."

Dr. Peter Graf, SVP Product Marketing, SAP

The SOA principles outlined in this book enable enterprises to leverage robust and proven
middleware platforms, including CORBA, to build flexible and business-oriented service
architectures. The authors also clearly describe the right strategies for using Model Driven
Architecture (MDA) to manage SOA Service Repositories in a platform-independent way,
enabling enterprises to better address the problem of heterogeneity at many levels. The
Object Management Group was created just to address this central problem of integration
in the face of constantly changing heterogeneity and platform churn, so I strongly
recommend this book for the bookshelf of every enterprise architect and developer.

Richard Mark Soley, Ph.D. Chairman and Chief Executive Officer, Object Management
Group, Inc.

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

The Coad Series
Peter Coad, Series Editor

• David J. Anderson
Agile Management for Software Engineering: Applying the Theory of Constraints for
Business Results

• David Astels
Test Driven Development: A Practical Guide

• David Astels, Granville Miller, Miroslav Novak
A Practical Guide to eXtreme Programming

• Andy Carmichael, Dan Haywood
Better Software Faster

• Donald Kranz, Ronald J. Norman
A Practical Guide to Agile Unified Process

• James McGovern, Scott W. Ambler, Michael E. Stevens, James Linn, Vikas Sharan,
Elias Jo
A Practical Guide to Enterprise Architecture

• Jill Nicola, Mark Mayfield, Michael Abney
Streamlined Object Modeling: Patterns, Rules, and Implementation

• Stephen R. Palmer, John M. Felsing
A Practical Guide to Feature-Driven Development

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Acknowledgments
Many people have contributed to this book in many ways, both directly and indirectly over
a period of two years. It is therefore impossible to list everybody who influenced,
supported, or aided us on our journey from the initial idea to the final manuscript.
Nevertheless, we owe our gratitude to at least the following people:

We would like to thank our publisher, Pearson Education, for the support that led to this
book being completed. In particular, we would like to thank Paul Petralia, our editor, and
Christy Hackerd.

The case studies in this book would not have been possible without extensive cooperation
with SOA protagonists from different organizations. We would like to thank Uwe Bath
(Deutsche Post), Fiorenzo Maletta (Winterthur), Claus Hagen (Credit Suisse), and Willie
Nisbet and Allan Kelly (Halifax Bank of Scotland).

This book would also not have been possible without countless discussions and critical
feedback of colleagues, friends, and reviewers. We extend our gratitude to Beat
Aeschlimann, Arne Allee, Michael Aschenbrenner, Arnaud Blandin, Ndome Cacutalua, Frank
Eversz, Dietmar Grubert, Stefan Havenstein, Georgia and Paul Hickey, Stefan Krahm,
James McGovern, Dirk Marwinski, Manfred Mayer, Steve Morris, Ingrid Müller, Joanis
Papanagnu, Arnold Pott, Kai Rannenberg, Kirsten Scharf, Uli Steck, Paul Stemmet, Michael
Stevens, Harald Störrle, Peter Stracke, Josef Wagenhuber, and Frank Werres.

Sebastian-Svante Wellershoff contributed to the design of our artwork. Birgit Anders
supported the author-team by proofreading, formatting, drawing figures, and many other
activities that were necessary to produce a manuscript for this book. We all appreciated the
accurate and swift manner in which she worked. Mark Roantree was our proofreader for
linguistic and some of the technical aspects of this book.

Roland Tritsch and Joachim Quantz have both closely worked with the author team and
developed many of the ideas that were presented in this book. They were like a virtual
extension of the author team.

Last but not least, we owe our special gratitude to our partners, families, and friends for
their patience, time, support, and encouragement. We know that we cannot make it up to
you.

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

About the Authors
Dirk Krafzig

Karl Banke

Dirk Slama

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Dirk Krafzig
Dirk has been dealing with the challenges of enterprise IT and distributed software
architectures throughout his entire working life. He devoted himself to SOA in 2001 when
he joined Shinka Technologies, a start-up company and platform vendor in the early days
of XML-based Web services. Since then, Dirk has acquired a rich set of real world
experience with this upcoming new paradigm both from the view point of a platform
vendor and from the perspective of software projects in different industry verticals.

Writing this book was an issue of personal concern to him as it provided the opportunity to
share his experiences and many insights into the nature of enterprise IT with his readers.

Today, Dirk is designing enterprise applications and managing projects, applying the
guiding principles outlined in this book. Dirk has a Ph.D. in Natural Science and an MSc in
Computer Science. He lives in Düsseldorf, Germany, and is 39 years old, married, and the
father of two children.

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Karl Banke
Software architecture has been with Karl since he programmed his first TRON-like game on
the then state-of-the art ZX81 in the early 1980s. After graduating as a Master of Physics,
he gained his commercial experience in various consulting assignments, mostly in the
financial and telecommunications sector.

He moved through stages of consultant, technical lead, software architect, and project
manager using a variety of object-oriented technologies, programming languages, and
distributed computing environments. Soon realizing that he was too constrained as an
employee in doing what he thought necessary in software development, he co-founded the
company iternum in 2000, where he currently acts as a principal consultant and general
manager.

Karl permanently lives in Mainz, Germany when not temporarily relocated by a current
project.

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Dirk Slama
Having spent the last ten years at the forefront of distributed computing technology, Dirk
has developed an in-depth understanding of enterprise software architectures and their
application in a variety of industry verticals. Dirk was a senior consultant with IONA
Technologies, working with Fortune 500 customers in Europe, America, and Asia on
large-scale software integration projects. After this, Dirk set up his own company, Shinka
Technologies, which successfully developed one of the first XML-based Web services
middleware products, starting as early as 1999.

Dirk holds an MSc in computer sciences from TU-Berlin and an MBA from IMD in Lausanne.
He is a co-author of Enterprise CORBA (Prentice Hall, 1999), the leading book on
CORBA-based system architectures. Dirk is currently working as a solution architect for
Computer Sciences Corporation in Zurich, Switzerland.

Contact: authors@enterprise-soa.com

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

mailto:authors@enterprise-soa.com
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Foreword
At the turn of the nineteenth century, a wave of new technologies such as the steam
engine, electricity, the loom, the railway, and the telephone emerged. Urbanization and the
mass production of goods in large factories fundamentally changed how mankind lived and
worked together.

One hundred years later, the industrial revolution had not slowed down: At the turn of the
twentieth century, automation, specialization, and a never-ending spiral of efficiency
improvement have resulted in modern economies with unheard-of industrial productivity.

After a phase of consolidation during the transition from the twentieth to the twenty-first
century, globalization and virtualization have now become the key drivers of our economic
lives. Without a doubt, they will yet again change how we live and work together.

If we take a closer look at the past 20 years, we can observe that established business
rules have been constantly redefined. New business models emerged; small companies
quickly grew into billion-dollar multinationals, aggressively attacking other established
companies. A wave of mergers, acquisitions, and buyouts changed the overall industrial
landscape.

IT has played a major role in all of this, be it through controlling production processes and
supply chains or by creating real-time links between financial markets, thus virtually
eliminating arbitrage opportunities by closing the time gaps of trading around the globe.
The Internet boom and the "virtual enterprise" are cornerstones of this ongoing
development. Entirely new products and services have been created, which would have
been unthinkable without the support of modern IT.

Without a doubt, today's modern enterprises are completely dependent on their IT.
Consequently, today's IT is driven by the same dynamics as the enterprise itself. Today,
we expect an extremely high level of flexibility and agility from our enterprise IT. During
the post Internet-boom years, cost efficiency quickly became another key requirement, if
not the most important one.

Enterprise IT has changed as a result of the constantly increasing pressure. In the early
days of enterprise computing, IT was merely responsible for providing storage and
processing capacity, with more and more business logic being added throughout the
decades. During the different boom phases in the 1980s and 1990s, a plethora of new
applications emerged, often side by side with the information silos that had been
developed in the previous 20 years.

Today, the increasing cost pressure is forcing us to efficiently reuse existing systems while
also developing new functionality and constantly adapting to changing business
requirements. The term "legacy system" is now often replaced with "heritage system" in
order to emphasize the value that lies in the existing systems.

The increases in reuse and harmonization requirements have been fueled by the urgency of
integrating the historically grown IT landscapes in order to improve IT efficiency and
agility. As a result, we could observe at a technical level the emergence of middleware
tools and Enterprise Application Integration (EAI) platforms in what can be seen as a
post-RDBMS phase.

While a lot of trial-and-error projects were executed in the 1990s, with more or less high
levels of success, the development of EAI and middleware concepts has now been
culminated in the principles of Service-Oriented Architecture (SOA), which can be seen as
an important evolutionary point in the development of integration technologies.

What is important about SOA is that it has taken away the focus from fine-grained,
technology-oriented entities such as database rows or Java objects, focusing instead on
business-centric services with business-level transaction granularity. Furthermore, SOA is
not an enterprise technology standard, meaning it is not dependent on a single technical
protocol such as IIOP or SOAP. Instead, it represents an architectural blueprint, which can
incorporate many different technologies and does not require specific protocols or bridging
technologies. The focus is on defining cleanly cut service contracts with a clear business
orientation.

At the Winterthur, as in any other large company, we have been facing all of the preceding
issues of historically grown systems and information silos. We had to find a solution to
increase our IT efficiency and agility. The Winterthur, with approximately 20,000
employees worldwide and over 130 billion Swiss franks of assets being managed (as of
December 31, 2003), is a leading Swiss insurance company. As is the case with any
well-organized company, we rely on our IT infrastructure to manage assets, products,
processes, customers, partners, employees, and any other aspect of business life.

Our core business systems are based on highly reliable mainframe computers that we
invested in over the past decades. However, like most other enterprises relying on
mainframes for their back-end systems, we saw the increasing need over the years to open
up these back-end systems. The main reason for this was to enable reuse of the core
business logic and data on these systems for new Internet and intranet front-end systems
on nonmainframe platforms such as UNIX and Windows.

To facilitate this development, we built up an application and integration platform, which
laid the technical basis for Winterthur's SOA. While the initial development started off at
our core Swiss market unit, the platform is nowadays reused abroad, because of its success
and the prevailing analogous technical requirements of other market units. Thus, we create
the basis to realize synergies and enhance our international initiatives.

Building on our technical platform, combined with our in-house experience in the area of
SOA and with the experience that our holding company Credit Suisse Group has gathered
in similar re-architectural efforts, we have been extremely successful. The Winterthur SOA
has achieved the goal of opening up our back-end systems in new application development
areas on other platforms. A solid SOA-based architectural approach is at the heart of our IT
strategy.

This book is important because it provides enterprise architects with a roadmap for the
successful establishment of SOA at the enterprise level. While a lot of the underlying
principles of the original Winterthur SOA have had to be derived from past experience and
intuition due to lack of SOA literature at the time, this book provides a concrete guide,
blueprints, and best practices for SOA architects. In addition to the Winterthur case study
in chapter 15, you will find many more concrete examples of how large corporations have
started to adopt the principles of SOA in their IT architectures.

It is also very important that this book not only focuses on the technical aspects of SOA,
but also places strong emphasis on the delicate issues of establishing SOA at the
enterprise level, truly deserving the title Enterprise SOA.

The SOA principles described in this book are the foundation on which enterprises can build
an IT architecture that will satisfy today's most important IT requirementsagility and
flexibilityat affordable costs.

Martin Frick, Head of IT at the Winterthur Group

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Reader's Guide
The reader's guide provides an indication as to who should read this book and the benefits
to be gained. A summary of each chapter provides an overview of the step-by-step
approach required for the successful introduction of Service-Oriented Architectures (SOA).

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Who Should Read This Book
This book is aimed at the various stakeholders of enterprise software architectures,
including software architects and evangelists, designers, analysts, developers, members of
IT strategy departments, project managers, representatives of product vendors, and those
interested in software architecture and its relation to structures and processes within
large-scale organizations. Furthermore, this book is an excellent introduction to the real
world of commercial computing for students in a variety of disciplines.

If you are a software architect, this book provides you with hands-on guidelines for the
design of SOAs. You will find the definition of an SOA together with its key terms as we
distinguish the SOA from approaches such as component architectures and software buses.
Furthermore, this book provides concrete guidance for the most important design decisions
one will encounter in practice. These guidelines comprise identifying services, assigning
the appropriate service type and allocating the ownership of data to services. You will also
discover how to utilize expansion stages in order to enable stepwise SOA introduction. This
book also provides valuable advice on the design of a functional infrastructure for business
processes and on how to achieve process integrity, approach heterogeneity, and initiate the
technical infrastructure. We discuss these guidelines with respect to different application
types, including Web applications, fat clients, mobile applications, EAI, and multi-channel
applications. For the purpose of software architects, Chapters 4 to 10 are most valuable. In
addition, Chapter 13, which covers SOA project management, will be helpful in ensuring an
efficient collaboration within an SOA project. Finally, the case studies in Part III give you
practical examples of how architects in other organizations introduced an SOA.

Do you see yourself in the role of an SOA evangelist? If you intend to implement an SOA
within your own organization, you must successfully promote your ideas. Most importantly,
you must be able to communicate the benefits of the SOA to all stakeholders of the
application landscape within your organization. Chapter 11 will be of special interest to you
because it presents the key benefits of SOA for the organization and each individual
stakeholder. In addition, Chapter 12 provides an in-depth description of the steps required
to set up an SOA, with considerable practice-oriented advice as to the introduction of
appropriate processes and boards. After reading this book, you should have a deeper
understanding of SOAs, enabling you to effectively argue the benefits to different
stakeholders and to establish the necessary processes and boards to make your SOA
endeavor a success!

If you are a software designer, analyst, or developer working in an SOA project,
although you are likely to work in a specific part of your application landscape, this book
will help you obtain a better understanding of the entire process. Furthermore, there are
key challenges such as process integrity that directly impact your work. This bookin
particular Chapters 7 to 10helps to address these challenges in a coordinated manner
within your SOA project.

If you work in the IT strategy department of an large organization, you should read this
book in order to find out how SOAs can add to your IT strategy. Your work is likely to be
driven by the demand for agility and cost effectiveness. Many enterprises have experienced
projects that failed to deliver the required functionality and therefore lost business
opportunities. Furthermore, many application landscapes suffer from high maintenance
costs for their inherited assets and the integration of new applications. In Part II (Chapters
1113) you will read about the various possibilities for overcoming these issues with an
SOA. Finally, several strategies for introducing the SOA within the organization are
presented. Part III (Chapters 14 to 17) contains several case studies with real-world
evidence that validates the SOA approach. Those success stories provide "living proof" of
SOA success and offer an impression of the different ways an SOA can be established.

If you are an experienced project manager, you should read this book in order to
understand the specific benefits of SOAs for project management. The SOA approach
implies a major simplification of the overall software development process, and this book
makes these benefits accessible. However, SOAs will challenge you, and as a result, this
book presents solutions to the most important problems one encounters in an SOA project,
both from the technical and project management viewpoints. You will find Chapter 13,
which focuses on project management, and Chapters 11 and 12, which depict the political
environment, to be most beneficial. It should be noted that this book does not introduce a
new software development methodology. You will require a sound knowledge of your
organization's favorite methodology, accompanied with endurance, social competence,
political cleverness, and management skills. This book will complement these skills so that
they can be successfully applied in an SOA project.

For a vendor of standard software packages, this book presents valuable guidance for
product management and sales. SOAs will soon gain tremendous importance in the
enterprise software market. As a salesperson or a product manager, you need to
understand the requirements of your enterprise customers in order to be able to offer
solutions that fit your customer's needs. In particular, Chapter 11 will be very beneficial
because it depicts the benefits of service-oriented software from the viewpoint of the
various stakeholders. Being able to offer service-oriented software implies a significant
competitive advantage. The inherent strength of SOAs will become the strength of your
product. It enables you to sell sophisticated vertical solutions, generating product revenues
for your company without the burden of high integration costs that inhibit the sales
process.

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A Roadmap for This Book
The successful adoption of an Enterprise SOA is based on three fundamental factors:
architecture, organization, and lessons drawn from real-world experience. The IT
architecture is the technical enabler for an SOA. A successful SOA adoption accelerates an
enterprise by reducing the gap between strategy and process changes on one hand and
supporting IT systems on the other. The IT architecture and the business organization are
mutually dependent, although they both drive each other. Finally, real-world experience, in
particular previous long-term IT infrastructure initiatives (both successful and
unsuccessful) influence and validate many of the core concepts of SOA. Not surprisingly,
this book is structured around these three factors. After we introduce the subject area in
Chapters 1 to 3, Part I, Chapters 4 to 10, focuses on the architecture. Part II, Chapters 11
to 13, discusses the challenges of introducing an SOA at the level of the organization,
depicting its benefits, processes, and project management. Part III, Chapters 14 to 17,
provides real-life examples of successful SOA introductions.

Chapter 1, "An Enterprise IT Renovation Roadmap," identifies the need for agility and cost
savings as the main drivers for the introduction of SOAs.

Chapter 2, "The Evolution of the Service Concept," describes how commercial information
technology has moved toward the service concept over the last 40 years. Today's SOA is
the preliminary endpoint of many years of painful "testing." Knowing and understanding
previous pitfalls and mistakes help to avoid them in new projects.

Chapter 3, "Inventory of Distributed Computing Concepts," introduces the fundamental
concepts of distributed computing that are required for subsequent discussions in Part I (
Chapters 410). Particular topics will be communication infrastructures, synchronous versus
asynchronous communication, payload semantics, granularity, and loose versus tight
coupling.

Part I: Architectural Roadmap

Chapter 4, "Service-Oriented Architectures," describes the particular requirements of large
organizations for building an architecture and defines the term "Service-Oriented
Architecture" as it is used throughout this book.

Chapter 5, "Services as Building Blocks," is a direct continuation of Chapter 4. It
introduces different service typesnamely basic, intermediary, process-centric, and external
servicesand gives an in-depth discussion of their key characteristics.

Chapter 6, "The Architectural Roadmap," completes the discussion started in Chapter 5.
Using the concept of building blocks, the high-level structure of SOAs is depicted. Chapter
6 introduces two key concepts: SOA layers and expansion stages. SOA layers aim to
organize the aforementioned services at the enterprise level. Expansion stages are
well-defined levels of maturity of an SOA that enable a stepwise implementation. In this
book, three expansion stages are distinguished: fundamental SOA, networked SOA, and
process-enabled SOA.

Chapter 7, "SOA and Business Process Management," shows how SOAs and BPM can
complement each other in practice. This chapter draws a demarcation line between the
responsibilities of a BPM infrastructure and the functional infrastructure provided by the
SOA.

Chapter 8, "Process Integrity," delves into the challenges of distributed architectures with
respect to consistency and how SOAs approach this major issue. This chapter provides
numerous helpful, hands-on guidelines tackling real-world constraints such as
heterogeneity, changing requirements, or budget.

Chapter 9, "Infrastructure of a Service Bus." By this point, the reader will know a lot about
service types, the handling of business processes, and SOA layers. This chapter will
address the issue of the type of runtime infrastructure that is required in order to put an
SOA in placean infrastructure that is commonly known as the "service bus." Chapter 9
highlights the fact that the service bus is often heterogeneous and provides technical
services such as data transport, logging, and security.

Chapter 10, "SOA in Action," discusses how SOAs apply to specific application types such
as Web applications, EAI, fat clients, mobile devices, and multi-channel applications.

Part II: Organizational Roadmap

Chapter 11, "Motivation and Benefits," provides a number of important reasons as to why
an organization should implement an SOA. It depicts the benefits for the organization as
well as for the individual stakeholders.

Chapter 12, "The Organizational SOA Roadmap," names four pillars for the success of an
SOA introduction at the enterprise levelnamely, budget, initial project, team, and buddies.
This chapter deals with challenges such as conflicts of interests of different stakeholders or
financing the overheads of the SOA infrastructure and gives practical advice on how to
overcome these obstacles.

Chapter 13, "Project Management," provides best practices of SOA project management.
Most importantly, this chapter depicts how service contracts can drive the entire
development effort. It shows how different tasks can be decoupled and synchronized at the
same time and how complexity and risk can be reduced. Furthermore, this chapter
describes testing, configuration management, risk assessment, and estimating costs and
delivery dates.

Part III: Real-World Experience

Chapter 15, "Case Study: Deutsche Post AG." The Deutsche Post World Net is a
multinational group comprising three main brands and more than 275,000 employees. The
SOA was set up for the Mail Corporate division at Deutsche Post, a partner to three million
business customers, providing services to 39 million households through 81,000 delivery
staff, 13,000 retail outlets, 3,500 delivery bases, and 140,000 letterboxes. The SOA at
Deutsche Post AG covers a mainly Java-based environment. This fact indicates that a SOA
can also be beneficial in homogeneous environments.

Chapter 15, "Case Study: Winterthur." Winterthur Group, a leading Swiss insurance
company, has approximately 23,000 employees worldwide achieving a premium volume of
33.5 billion Swiss Francs in 2003. In 1998, Winterthur's Market Unit Switzerland developed
a concept for an Application Service Platform. Since then, this integration platform, called
"e-Platform," has been implemented and used as the technological basis for the realization
of an SOA. Today, the SOA includes most of the mission-critical business applications. Its
technical focus is on mainframe-based CORBA services. Well-organized processes and a
service repository have been recognized as key success factors at Winterthur.

Chapter 16, "Case Study: Credit Suisse." Credit Suisse Group is a leading global financial
services company operating in more than 50 countries with about 60,000 staff. Credit
Suisse reported assets under management of 1,199 billion Swiss Francs in December
2003. The SOA was initially implemented in order to create multi-channel banking
applications and online trading portals. In addition, the SOA was utilized to consolidate the
core business application portfolio. Credit Suisse has implemented three different service
buses in order to approach the different requirements of synchronous communication,
asynchronous communication, and bulk data transfer.

Chapter 17, "Case Study: Intelligent Finance." Halifax Bank of Scotland (HBoS) is a UK
Financial Services provider with divisions in Retail Banking, Insurance & Investment,
Business Banking, Corporate Banking, and Treasury. HBoS is the UK's largest mortgage
and savings provider with a customer base of about 22 million. Intelligent Finance was
launched as a division of Halifax plc with the aim of attracting new customers from outside
Halifax and specifically to target the UK clearing banks. Intelligent Finance was launched
as Project Greenfield in 2000, starting an entire new banking operation from scratch, based
on an SOA. Three years later, by the end of 2003, Intelligent Finance had 820,000
customer accounts, representing assets of £15.5 billion. The Intelligent Finance system
was probably one of the largest and most advanced early SOA deployments in the financial
services industry in Europe.

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 1. An Enterprise IT Renovation
Roadmap
This book makes a big promise: It is offering an IT renovation roadmap, which will leverage
the concepts of Service-Oriented Architectures (SOA) on both the technical and
organizational levels in order to create sustainable improvements in IT efficiency and
agility. The aim of this roadmap is to strike a good balance between immediate gains on
one hand and long-lasting improvements to the enterprise IT landscape on the other. An
SOA should increase the capability of an enterprise to address new business requirements
on the short term by reusing existing business logic and data models, thus incurring only
minimal cost, resource, and time overheads, while minimizing risks, especially when
compared to rewriting entire application systems. In addition, an SOA should provide
endurable benefits in terms of agility because it provides a long-term strategy for the
increase of the flexibility of an IT infrastructure.

This chapter closely looks at the problems faced by enterprise software today, the resulting
requirements for an enterprise IT architecture such as an SOA, and how such an
architecture can be established on the organizational level.

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.1. Agony Versus Agility
In 2003, Nicolas G. Carr published the heatedly debated article "IT doesn't matter" in the
Harvard Business Review, claiming that "... like electrical grids or railroads, IT would
become a ubiquitous commodity." Regardless of your position on this issuewhether or not
you consider enterprise IT a commodityenterprises heavily depend on the IT backbone,
which is responsible for running almost all processes of modern enterprises, be they
related to manufacturing, distribution, sales, customer management, accounting, or any
other type of business process. Because of today's highly competitive global economy,
these business processes underlie constant change: Enterprises must constantly sense
changes in market conditions and swiftly adapt their strategies to reflect these changes.
Therefore, it is a key requirement for modern enterprise IT that changes in company
strategy be reflected quickly and efficiently in the company's IT systems, which are the
backbone for executing the strategy.

This is exactly where the enterprise software dilemma starts: Today's enterprise software
development almost always suffers from lack of agility and from inefficiency. This means
that enterprises are not able to match business requirements onto underlying IT
infrastructure fast enough, effectively limiting the capability of the enterprise to react
appropriately to market demands. In addition, the inefficiency of enterprise software
development means that the development that is actually done costs too much when
compared to the actual output.

If we look at a typical enterprise software system, we can normally observe an initial phase
of high productivity and agility, as shown in Figure 1-1. During this Green field phase, the
system is built with much new functionality, and initial change requests can be
implemented relatively quickly and efficiently. However, after the initial system
implementation has been put in place and the first couple of change requests have been
executed, the ability to make more changes to the system deteriorates dramatically, and
maintenance over time becomes harder and harder.

Figure 1-1. Change requests reduce the agility of a system over time.

This stagnation phase, which almost any enterprise software system experiences over time,
cannot be explained by a single reasona number of factors contribute to this phenomenon.
Some of these reasons are related to software technology, such as the difficulty of making
structural changes to an existing code base. However, most of the reasons are not of a
technical nature but rather are related to reasons on the organizational level. For example,
after the initial launch phase of a system, the project management and key domain experts
are likely to move on to the next project, often leaving the maintenance of the system to
less skilled maintenance workers, many times even without doing a proper hand-over. In
addition, after the initial phase of euphoria about the new system, it might lose its internal
lobby over time and thus the necessary political support within the organization. Tight
project budgets often mean that fixes and changes cannot be done properly and are only
done on an ad-hoc basis, without taking the existing order of the system into
consideration. Typically, there is no time and budget for doing a proper refactoring of the
system to ensure its long-term maintainability. Finally, critical structural decisions are
often made on the side, without executing proper controlfor example, an engineer might
quickly write a small batch program to synchronize data between two systems, and 10
years later, a small army of developers is needed to deal with the consequences of this
ad-hoc decision.

When looking at enterprise software, we are usually not looking at isolated systems, but at
large numbers of systems with complex cross-dependencies that have grown over many
years and with a high level of heterogeneity and redundancies. We rarely have sufficient
in-house knowledge about the different systems, and we often need to cope with very
different design and programming styles. Finally, people are getting used to this situation
and are starting to think in terms of workarounds, not in terms of the "right" structures.

Some organizations might have found better ways of coping with these problems than
others, but it's hard to find any organization today that can claim that it has completely
sorted out these issues. For this reason, many organizations require an enterprise IT
renovation roadmap to help providing a sustainable transformation into a more agile IT
organization that is able to quickly and efficiently adapt to changing business
requirements. This chapter lays out the cornerstones of this roadmap as it is presented in
this book.

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.2. Enterprise Software Is a Different Animal
In order to better understand the problems of enterprise software, we need to look at the
specific characteristics of it, which are different from those of other types of software, such
as system software, desktop applications, embedded systems, scientific software, or video
games.

As the name indicates, enterprise software is tightly coupled with the internal organization,
processes, and business model of the enterprise. Enterprise software underlies both
cross-departmental dependencies and external business relationships. Consequently, an
architecture for enterprise software must deal with large numbers of different
requirements. Many of these requirements are conflicting, while others are unclear. In
almost every case, the requirements are a moving target due to the permanent change of
markets, the organization of the enterprise, and its business objectives. It is this
involvement in all aspects of the enterprise and the business that makes enterprise
software highly complex.

Enterprise applications rarely contain a large amount of complicated algorithms. The code
that describes a piece of business logic is usually very simple. The structure of a
COBOL-based billing system is much simpler than, for example, an embedded system for a
Mars robot with complex real-time and multi-threading requirements. In enterprise
applications, one usually finds very simple data structures, which again are different from
other systems such as geographic information systems (GIS).

Let's consider an example in order to illustrate the difference between enterprise
applications and other software: An enterprise application such as a Customer Relationship
Management System (CRM), a billing system, a shipping system, or an insurance claims
processing system. The stakeholders in these systems include different business units and
potentially even the CEO, as well as different IT projects, IT maintenance, and operations.
In these scenarios, we will be facing highly heterogeneous teams and often very political
environments. The technology landscape will be highly heterogeneous as well, including
many different application and middleware platforms. The business data and content will
have a very long lifetime, especially when compared with the much shorter cycles of
technology innovation. We need to deal with constantly changing functional requirements
that are usually not well-defined. In addition, we will be facing many cross-dependencies
between functional requirements, as well as heterogeneous technology platforms. The
number of end users will be potentially very large, and the applications will have to be
rolled out to large numbers of PCs, often more than 10,000.

Take, on the other hand, a desktop application, such as a word processor or spreadsheet
application. A smaller, more homogeneous technical team will develop this application. It
will be used by office workers as well, but the problem space is more well-defined. The
application logic is self-contained, with very few cross-dependencies. Finally, there is no
roll-out problem because the end user is typically responsible for the installation himself.

As we can see from these examples, enterprise software is unique in many respects, and
therefore, it requires unique measures to ensure the efficiency of its development and
maintenance.

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.3. The Importance of Enterprise Software
Architectures
According to the second law of thermodynamics, any closed system cannot increase its
internal order by itself. In fact, any activity that is geared toward ordering the system will
increase its overall disorder (called entropy). In many respects, this law is also applicable
to enterprise software, which often has very similar characteristics. Consequently, outside
intervention is continually required to help create a higher order and to ensure that
development efforts are not lost.

In enterprise software, the architect takes on the role as an outside influencer and
controller. It is his responsibility to oversee individual software projects from the strategic
point of view of the overall organization, as well as from the tactical, goal-oriented
viewpoint of the individual project. He has to balance different requirements while
attempting to create an enduring order within the enterprise software landscape. The
enterprise software architecture is the architect's most important tool at hand. Software
architects are constantly confronted with changes to and expansion of functionality that
increase system complexity and reduce efficiency. By refactoring current solutions,
architects constantly strive to reduce complexity and thereby increase the agility of the
system (see Figure 1-2).

Figure 1-2. Software architects use refactoring to fight the constant
increase in system complexity.

[View full size image]

Apart from the events that increase complexity during normal usage of the architecture,
single events can also have an important effect on enterprise IT. They might occur in major
changes to existing jurisdiction, the end-of-life of a supported product, or the introduction
of large chunks of computing infrastructure, such as in the course of a merger or
acquisition. Such events require a major effort at very short notice to keep the architecture
in a simple and maintainable state. Devastating consequences have been observed as a
result of mergers and acquisitions: concise financial reporting being lost after a merger and
raw system capacity being exhausted after an acquisition. Because it is unknown a priori
when such effects will occur, it is vital to keep the enterprise architecture in a maintainable
and changeable state all the time.

As we will see in the remainder of this book, Service-Oriented Architectures are particular
well suited to cope with the needs of such an ongoing incremental process of optimization.

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.4. The Requirements for an Enterprise Software
Architecture
As a result of the aforementioned tight coupling with the internal organization, processes,
and business model of the enterprise, an enterprise software architecture must fulfill very
different requirements than, for example, a software architecture for a system that is
controlled by a small number of highly qualified domain experts, such as the Mars robot or
a video game engine.

In order to improve agility and efficiency, an enterprise software architecture must provide
particular characteristics:

Simplicity. The enterprise architecture must be simple in order to allow efficient
communication between key personnel. As previously discussed, many people are involved
in the specification and construction of enterprise software. All these people have different
roles and consequently different viewpoints with regard to the software. It is also likely
that several different skill sets exist among personnel. These might range from IT
coordinators of functional departments to technical architects. Many IT coordinators will
have detailed business domain knowledge but no technical expertise. On the other hand,
technical architects will probably have an excellent technical education but have little
understanding of the vertical business. Nevertheless, all the people involved must be able
to understand and manage the architecture at their respective levels (e.g., specifying new
functionality at the business level and implementing and maintaining it).

Flexibility and maintainability. Every enterprise system is subject to ongoing change. It
must continuously be adapted to new requirements due to the need of evolving markets,
legal changes, or business reorganizations. Therefore, the architecture must lead to a
highly flexible and maintainable system. The architecture must define distinct components
that can be rearranged and reconfigured in a flexible manner. Local changes cannot be
permitted to have an impact on the global system. Providing that the external API of a
component remains stable, an internal change should not affect operations outside the
component. In this context, one needs to understand that external interfaces of
components must be designed very carefully. To a great extent, interfaces must be generic
and not specific to a single usage scenario. However, defining generic interfaces requires
excellent domain knowledge, experience, and to some extent, luck. Finally, the internal
implementation of a component must allow efficient maintenance, making it is easy to add
or modify functionality.

Reusability. Reusability has been a major objective of software engineering for decades,
with varying degrees of success. It is in the interest of an enterprise to gain as much
benefit from its software assets as possible. This can be achieved by creating an inventory
of useful building blocks and continually reusing them. One obvious reason for reuse is
reduced development and maintenance cost, which can be accomplished by sharing
common functionality in code libraries that are used across different projects. However,
perhaps a more important aspect of reusability is the ability to share data across
applications in real-time, thus reducing content redundancies. Having to maintain the
same dataset in multiple databases becomes a nightmare in the long term. Unfortunately,
it is not easy to achieve the goals of reuse. Large organizations have learned that reuse is
not always efficient because it is particularly costly to administer, find, and understand the
components that should be reused, and sometimes this cost outweighs the benefits.

Decoupling of functionality and technology. The architecture must make an enterprise
organization independent of the technology. It must decouple the long lifecycle of the
business application landscape from the shorter innovation cycles of the underlying
technology. Moreover, an architecture that is designed to last longer than one or two of
these technology innovation cycles must cope not only with changing technologies but also
with the actual lifecycles of installed technologies, which can be much longer. It is
therefore a major requirement that the architecture tolerate both heterogeneity and change
to its technical infrastructure. Furthermore, the development of business functionality must
be decoupled from the underlying technology. In particular, the architecture must avoid
dependencies on specific products and vendors.

This book illustrates how a Service-Oriented Architecture can help achieve the design goals
for enterprise software systems as described previously. Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1.5. The Relation of Enterprise Architecture and
Enterprise Standards
For many decades, enterprise IT organizations have attempted to improve agility and
efficiency by homogenizing their systems through the introduction of enterprise-wide IT
standards, but mostly with very limited success. Therefore, it is important to understand
that an enterprise architecture is not equal to an enterprise standard, as we discuss in this
section.

In the 1980s, with relational database systems becoming mainstream, we saw a wave of
so-called Enterprise Data Model (EDM) projects. The idea of these standardization projects
was to define one global data model for all the business entities in an enterprise, which
was to be shared among all the different organizations and systems in a company. Almost
all of these EDM projects failed, and today, there are usually as many different database
schemas out there as there are databases in an enterprise. There are a variety of different
reasons for the failure of these EDM projects, including political turf wars between different
departments, conflicting interests between the different stakeholders ranging from
business representatives over application specialists to DBMS administrators, the sheer
technical complexity of the undertaking, and the fact that due to the dynamics and
complexity of modern enterprises, it is usually impossible to capture a snapshot of the
complete state of the enterprise at a given point in time.

In the 1990s, we saw the next attempt to homogenize the enterprise application
landscape, this time through enterprise-wide middleware standards. The concept of the
Enterprise Software Bus became popular. The idea was that by agreeing on a ubiquitous,
technology-independent, enterprise-wide standard for communication between software
modules, the problem of application integration would be solved once and for all. However,
the reality in almost all enterprises today is that in addition to application heterogeneity,
we now face the problem of middleware heterogeneity as well. In many cases, middleware
such as CORBA was only used to solve point-to-point integration problems on a per-project
basis, instead of being established as a global software bus; as a result, many enterprises
now have nearly as many incompatible middleware systems as they have applications.

In general, it seems fair to say that enterprise standardization efforts in IT have failed to
deliver on their promise of homogenization and easy application integration. Too many
generations of middlewareranging from DCE over CORBA to SOAP and WSDLhave been
touted as silver bullets but have failed to become established as the ubiquitous Enterprise
Software Bus, leaving behind a high level of cynicism among the people involved.

As a reader of a book on Service-Oriented Architectures, you might now be asking
yourself, "So what is different this time?" Is SOA not yet another enterprise-wide
standardization effort, this time under the label of the Enterprise Software Bus? How are
SOAP and WSDLwhile maybe technically superior and more flexiblegoing to address the
organizational challenges of global standards that made the Enterprise Data Model, the
Enterprise Software Bus, and many other enterprise standardization efforts fail to a large
extent?

This book takes the position that SOA is neither a technology nor a technology standard,
but instead it represents a technology-independent, high-level concept that provides
architectural blueprints, such as the ones outlined in the first part of this book. These
architectural blueprints are focusing on the slicing, dicing, and composition of the
enterprise application layer in a way that the components that are created and exposed as
services in the SOA are not only technically independent but also have a direct relationship
to business functionality. They enable the structuring of application components on the
local level while also catering for global integration of these components. As we will show
in this book, an SOA does not rely on the support of particular runtime protocols, such as
SOAP or IIOP. Therefore, an SOA does not impose adherence to technical standards on the
global level and is not based on strict norms and specifications (see Figure 1-3).

Figure 1-3. Enterprise Data Models and Software Buses were popular
approaches to the challenges of enterprise computing in the 1980s

and 1990s.
[View full size image]

Applications that are structured according to the guiding SOA principles laid out in this
book will be able to fit into any integration scenario, regardless of the runtime protocols
required. Having said this, work will still be required to bridge technology gaps, such as
different communication protocols, but the efforts required to bridge these gaps will be
marginal when compared to the complexity of integrating applications on the structural
level.

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.6. Organizational Aspects
When talking about enterprise IT, it is important to realize that manyif not mostof the
problems associated with it are not of a technical nature but can be found on the
organizational level instead. Quite naturally, we have already implicitly touched on many of
these organizational aspects in our discussion so far (for example, when discussing the
reasons for the failure of enterprise standards such as the Enterprise Data Model or the
Enterprise Software Bus, which largely resulted from problems on the organizational and
not the technical level).

The IT organization and the way projects are managed in a large enterprise are again very
different from what one would find, for example, in a company that produced embedded
systems or games. First and foremost, it is important to realize that most likely in no other
part of the software industry will we find a development and maintenance process that is
so closely aligned with the end customer. If an enterprise is developing a new financial
reporting system, it will have to be done hand-in-hand with the finance department and
any other stakeholders of the financial reporting system, possibly up to the CEO. A
software team that is developing embedded control software for a dishwasher is unlikely to
have daily meetings with a housewife about the exact functionality of the software.

An important consequence is that we are dealing with a much more complex and more
ambiguously defined decision-making process, which is driven more often by business
strategy and political agendas than by technical arguments. The organizational
environment we are dealing with is extremely heterogeneous, and many different opinions
will have to be incorporated into any decision that is made, be it a decision about budgets,
functional requirements, project priorities, or the interesting question of what actually
defines the success of an IT project.

For all these reasons, it is vital that our enterprise IT renovation roadmap provides not only
a technical roadmap but also an organizational roadmap, which outlines how the technical
architecture is to be established on the enterprise level from the political and
organizational point of view. The second part of this book provides an overview of this
organizational roadmap.

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.7. Lifelong Learning
Enterprise software has always suffered from the mismatch between technical and
business-related concepts and the different languages spoken by the people on both sides
of the fence. As a result, we have not only faced inefficiencies, but we also have often lost
important knowledge and consequently had to reinvent many solutions.

Many attempts have been made in the past to find a common denominator between
business and technical concepts. For example, SQL was invented in the 1970s with the
vision that it would give non-technical business analysts a tool to access, analyze, and
manipulate business data directly. Today, SQL is largely seen as a tool for technical
experts, and it has turned out that most of the entities found in relational databases are
too fine-grained and closely intertwined with technical concepts to have a meaning on the
business level.

It is a key goal of an SOA to provide services that have a concrete meaning on the
business level. Because of this one-to-one mapping between business and technology
entities, SOA provides a unique chance for the first time in IT history to create artifacts
that have an enduring value for both the business as well as the technology side. SOA
provides a chance to make things that have been learned the hard way usable for the
organization in the long run.

Similarly to human beings, organizations will never be able to stop learning if they want to
be successful for long. SOA provides an excellent platform for this lifelong learning on the
organizational level because an SOA enables us to constantly compare the nominal and the
actual and to react accordingly to fill the gaps or adapt the architecture to reflect changes
in business strategy.

Consequently, the third part of this book provides a number of real-world case studies,
which can provide a good starting point for learning the lessons resulting from other
organizations' adoption of SOAs and the impact they had.

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

1.8. The Enterprise IT Renovation Roadmap
As we have outlined in this introduction, we need strong enterprise architecture concepts
to address the structural problems of the enterprise IT landscape, accompanied by a
strategy for how to establish the architecture on the organizational level. SOA provides
these concepts, but we have to be aware that implementing an architecture like an SOA is
an ongoing process, requiring constant guidance and overseeing. The SOA architect needs
to bridge many conflicting requirements, resulting from frequent changes of business
requirements, the evolution of application and infrastructure technology, and last but not
least, changes to the architecture itself. We need ways to introduce step-wise
improvements, which will bring us slowly but steadily closer to our goal. We will have to
accept that the path we are about to enter will not be a straight path, and there will be
many influences outside of our control. Nevertheless, the authors believe that the
introduction of an SOA will bring many long-term benefits to an enterprise. Figure 1-4
depicts the overall vision for how our roadmap can bring an enterprise that is suffering
from development inefficiencies back to a level of high efficiency and agility.

Figure 1-4. Service-Oriented Architecture is a key element of an
enterprise IT renovation roadmap.

[View full size image]

This book aims to flesh out an enterprise IT renovation roadmap. This roadmap is not only
related to technology, but it also equally addresses organizational challenges. The roadmap
anticipates constant changes in strategic directions and assumes that the underlying
architecture will have to be constantly adapted to include the results of lessons learned as
we go along. Consequently, the three parts of this book are structured to capture these
different requirements.

Figure 1-5. An Enterprise IT renovation roadmap needs to address
three dimensions: architecture, organization, and real-world

experience.

Part I of this book provides the architectural roadmap, mapping out the different expansion
stages of an SOA, which will gradually help IT organizations to get back to a high level of
agility and efficiency on the technical level.

Part II of this book looks at the organizational roadmap, providing an in-depth discussion
of how the architecture can be established on the organizational level, the different
stakeholders and how they must be involved, and how an SOA can be leveraged to drive
project management more efficiently.

Finally, Part III of this book provides a number of case studies, which provide real-world
experiences from large corporations that have already started their journey on the
SOA-based enterprise renovation roadmap.

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 2. Evolution of the Service
Concept
Before looking at the road ahead, we want to take a step back and look at the evolution of
the service concept by examining the milestones of enterprise computing and how they
have shaped the concept of "services." We will look at three core development directions:
programming languages, distribution technology, and business computing. Each has
undergone a major evolution in the past 40 years, leading to a level of abstraction that
supported the emergence of Service-Oriented Architectures.

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.1. Milestones of Enterprise Computing
The term "service" has been present in commercial computing for a long time and has
been used in many different ways. Today, for example, we find large companies, such as
IBM, promoting the concept of "services on demand." At the beginning of the new century,
the term "Web services" became extremely popular, although it has often been used to
refer to very different computing concepts. Some people use it to refer to application
services delivered to human users over the Web, like in the popular salesforce.com
application. Other people use the term "Web services" to refer to application modules made
accessible to other applications over the Internet through XML-based protocols.

Because of the many different ways in which the term "service" has been used over the
years in the IT industry, it is necessary to define more precisely how we use it in this book.
However, before looking at a more formal, technology-oriented definition in Chapter 4,
"Service-Oriented Architectures," we will look at a more generic definition that better suits
the purpose of this chapter, which is examining the roots of "our" understanding of
services.

The Merriam Webster's Dictionary gives various definitions for the term "service,"
including "useful labor that does not produce a tangible commodity" and "a facility
supplying some public demand." [1] In this book, the term "service" takes its meaning from
these definitions. It denotes some meaningful activity that a computer program performs
on request for another computer program. Or, in more technical terms, a service is a
remotely accessible, self-contained application module. Application frontends are making
these services accessible to human users (see Figure 2-1). Often, the terms "client" and
"server" are used synonymously for "service consumer" and "service provider,"
respectively.

[1] http://www.m-w.com.

Figure 2-1. Our understanding of the term service: A service provider
(commonly a remote server) performs some task at the request of a

service consumer (the client).

The services covered in this book provide abstraction from a lot of their technical details,
including location and discovery. Typically, our services provide business functionality, as
opposed to technical functionality. Consistent with the definition from Merriam Webster's
Dictionary, our services are not designed for one specific customer, but instead they are "a
facility supplying some public demand"they provide a functionality that is reusable in
different applications. The cost effectiveness will depend strongly on the number of
different customers a service has, that is, the level of reuse that can be achieved.

A concrete implementation of an SOA provides service consumers with seamless access to
the different services available in it. Thus, after a service consumer is "wired" into the
instance of the SOAafter the "ring tone" of the SOA is availableusage of the services is
seamless and transparent. However, Chapter 1 said that an SOA is an architecture per se
and not a service bus or any other specific middleware, and therefore, it describes
structure, not concrete technology. Consequently, instances of SOAs might take very
different technical shapes and forms in different enterprises.

A crucial factor in the development of services as we understand them in the context of
this book is the quest for the right degree of abstraction. Ultimately, a service encapsulates
some activity of a certain complexity. Using a service makes the world more convenient for
the service consumer. Consequently, an appropriate interaction pattern must exist between
the service provider and service consumer. Given the analogy of the telephone network as
the service infrastructure, services can be anything from hectic chatter to concise and
focused conversation. They can also include some form of telephone conference, answering
machine, or call redirection. In the remainder of this book, you will notice surprising
similarities between the service concept and the telephone analogy.

It is interesting to notice that the service model, as it is defined in this book, has been
preceded by many technologies and technical concepts in the last 30 years that shared
many of the same underlying ideas and concepts. For example, look at the creation of
reusable business functions on mainframe computers. Small computer networks created a
fertile ground for service-related innovations, most notably the creation of remote
procedure calls. Component-based development and object orientation promoted
interface-driven design paradigms. Combinations of these concepts spawned platforms for
distributed computing. At the same time, relational database development progressed
rapidly, creating reliable data stores for enterprises. Business functionality left the
mainframes and moved to one of several distributed paradigms. In the 1980s, packaged
business solutions became available to a wide range of functional areas and industries. By
1995, the World Wide Web offered an extremely simple yet extremely successful service:
the provision of content over a global network. The same network infrastructure is used
today to enable interaction between remote computer systems through Internet protocols
such as ebXML and SOAP.

The roots of service-orientation can be found in three different areas: programming
paradigms, distribution technology, and business computing. The development of different
programming language paradigms has not only contributed to the implementation platform
for the different elements of an SOA but also has influenced the interfacing techniques
used in an SOA, as well as the interaction patterns that are employed between service
providers and service consumers. Many of the concepts originally found in programming
languages have also made their way into the distribution technology that is presently used
to offer remote access to services provided by different applications on different technical
platforms. Finally, and maybe most importantly, the evolution of business computing has
resulted in a large number of proprietary as well as packaged applications (see Figure 2-2)
such as Enterprise Resource Planning (ERP), Customer Relationship Management (CRM),
and Supply Chain Management (SCM), which today are providing the contentthe data and
the business logicthat brings an enterprise SOA to life. Because of the closeness of services
to concrete business functionality, service-orientation has the potential to become the first
paradigm that truly brings technology and business together on a level where people from
both sides can equally understand and talk about the underlying concepts.

Figure 2-2. The long history of programming languages, distribution
technology, and business computing has influenced the development

of a new paradigm, called service-orientation.
[View full size image]

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.m-w.com
http://www.m-w.com
http://www.processtext.com/abcchm.html

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.2. Programming Paradigms
The first programming paradigm that enabled abstraction from the details of computer
programs was functional decomposition and the related technology of functional analysis.
Functional decomposition pioneered the formal introduction of flow charts, showing data
that flows through a number of processes. One of the first people to formalize it was Myers
in 1976 [Myers76]. However, the first language that was suited to functional
decomposition was the COBOL (Common Business Oriented Language) programming
language that was created as early as 1959 by a body called CODASYL (Conference on Data
Systems Languages) and that was later adopted as an ANSI standard. Having undergone
many improvements and additions since then, it is still a prevailing programming language
in many major organizations. Apparently, more code is written in COBOL than any other
language. In 1970, while working at the Polytechnic University of Zurich, Niklaus Wirth
invented Pascal, a language that explicitly encouraged functional decomposition and that
remains one of the most popular teaching languages for computer science.

Functional programming concepts remain popular because they are easy to understand by
students, programmers, and customers. They provide a powerful tool to create reusable
blocks of codefunctionsthat can even be sold in the form of software libraries.

Functional programming contributed to the service concept because functions essentially
provide some form of abstraction. However, the amount of abstraction they can provide is
limited.

It soon became apparent that the functional paradigm had its limits. Multipurpose reusable
functions are hard to create. Often, the caller must provide many parameters, and a lot of
data must be passed into multiple functions in order to obtain the required result. The
concepts of software modules and software components were created to cope with this
growing complexity. These concepts came in many different flavors. The first time these
concepts appeared was in the original implementation of the ADA programming language,
modules in the Modula2 computing environment (also created by Niklaus Wirth in 1979),
and the hugely commercially successful MS Visual Basic's VBX components. Although very
different, they share the common abstraction of software components as a container for
both data and the functions that operate on that data. Even before the advent of software
components, it was considered good programming practice to shield a function's user from
its internal details. At this point, the concept was introduced as a language element known
as encapsulation.

The significant increase of abstraction and encapsulation that components provide are an
important step towards service orientation. However, their main purpose was in-situ
development reuse, while service orientation focused on distribution and runtime reuse.

By the early 1980s, modularization and component programming were widely recognized
as the next big trend in software development, and the MODULA language provided a
stable and mature programming platform for this trend. However, the Japanese and U.S.
governments poured massive amounts of money into the development and marketing of
their own programming environments, PROLOG and ADA.

The uncertainty that emerged from this proliferation of platforms delayed the adoption of
component-oriented programming long enough for it to be outrun in popularity by
object-oriented programming, [2] which introduced the object as a programming and runtime
concept. Originally, object-oriented programming was developed for simulation purposes.
The first object-oriented language, SIMULA, was developed as early as 1967 at the
Norwegian Computing Center in Oslo by Ole-Johan Dahl and Kristen Nygaard, and it has
since been developed further [Kirk89]. Object orientation entered mainstream
programming paradigms in the mid 1980s with the creation of Smalltalk [Gold83] and
C++ [Stro85]. New versions of most other object-oriented languages, such as Java, were
invented, while others, such as Pascal or even COBOL, were extended to embrace object
orientation in one way or another.

[2] It took approximately 15 years until the concepts of component-orientation reemerged in the late 1990s, this time supported by
concrete component platform implementations such as Enterprise Java Beans.

Objects are much like components in that they support encapsulation and the bundling of
data and functions and add the concept of individual entities (the objects) as instances of
classes. The objects communicate through message exchange, but more importantly,
object orientation adds the concept of inheritance, where types can be derived from other
types. The derived type inherits all the internals and behavior of its ancestor. This spawned
new concepts such as the programming by interface paradigm.

A common problem of object-oriented programming is that the level of abstraction and
granularity that is exposed to the clients of a component is too fine to enable efficient
reuse, let alone distribution (see Figure 2-3). Therefore, object-orientationwhile being great
for large, usually relatively isolated and monolithic applicationsproved to be a dead-end
from the point of view of distributed computing. Service-orientation aims to overcome a lot
of the problems of distributed object computing, especially with respect to the right level
of granularity and access patterns for remote services. Service-orientation also often goes a
step backward when it comes to the question of how tightly data and functionality should
be coupledwhile OO imposes encapsulation of data and functionality, service-orientation
often assumes that data and functionality are separated.

Figure 2-3. The development of programming languages had a strong
impact on the interfacing techniques for distributed components and

the implied access pattern to these components.
[View full size image]

As we can see, the evolution of the different programming paradigms also had a huge
impact on the concept of service-orientation. Modern programming languages and
development environments are providing the technical foundation for enterprise-level
services. However, not all programming concepts are directly applicable on the enterprise
service level. With the ever tighter coupling of remoting and programming language
technology, it becomes even more important to be aware of these mismatches between
programming languages and enterprise services and to avoid falling into the trap of
exposing too finely grained technical concepts to the enterprise level. [3]

[3] See Sections 9.1.2.2 and 9.1.2.3 for detailed insight into this specific discussion.

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.3. Distributed Computing
Where the term service is used in this book, we usually assume that the service does not
necessarily reside on the same physical machine as the calling application. The capability
to call a remote computer program from another computer program in a seamless and
controlled way is at the heart of our understanding of services.

An important challenge of distributed computing is to find abstractions for both
remoteness and the actual service task at the same time. Although remoteness can be
hidden from the service consumer, the service provider must still choose its invocation
scenarios with the right granularity.

The distributed computing infrastructure was developed in the last 30 years. Business
computing originally meant mainframe computing and involved large computers with costs
in the multimillions of dollars, performing tasks mostly on their own. At some point, they
morphed into more interactive multi-user systems. Rather than distributing the computing
power, only data capture and display was distributed using terminal devices such as the
DEC VT100 or the IBM3270. Some of the first things such systems had to share among
themselves were data and output devices such as tape recorders or printing systems. In
the early 1970s, computers became smaller and cheaper. The price/performance ratio
made computer technology suitable for a broad range of applications. Research institutions
quickly realized that they could operate both more economically and more independently
when they were able to use various small computers rather than one mainframe system. At
the universities of Stanford and Berkeley, two research programs eventually led to the
creation of the Unix operating system. The Stanford University Network spun off the
company Sun Microsystems in 1982, which is today one of the largest vendors of Unix
computers. Unix is different from its predecessorsand many of its successorsin that its
design quickly adopted the network as an essential part of the system environment. Two
ideas fostered this design perspective: facilitating remote control of computers and
programs and providing services to other computers in the network. The first train of
thought created tools such as telnet and the Berkeley r-tools suite. The second one
featured remote printing and the transparent provision of storage spacethe NFS file system
released by Sun Microsystems in 1984. In fact, the latter was the original raison d'etre for
the SUN-RPC standard, the first Remote Procedure Call system.

Even though distributed computing was available as early as 1980, it was mainly confined
to the academic world until well into the 1990s. Unix computers mainly acted as so-called
workstationspowerful computational and visualizing enginesin research facilities and
universities. In the business environment, a hub-and-spoke distribution model prevailed
until well into the 1990s. A number of desktop computer systems would typically access a
central system for storage and printing. Often, these file servers used an entirely different
operating platform from its clients. As structured and relational databases became more
mature, businesses adopted a client/server approach. A large chunk of the application
resided with the client that remotely accessed a database server. Execution logic was split
between client and server as databases, most notably Sybase, introduced the concept of
functions that were executed within the database and that did not need to be shipped with
the client applicationso-called stored procedures. Another remarkable innovation was
Novell's NetWare Loadable Modules (NLM), which were programs that ran on the server.

The next logical step was to blur the distinction between the client and the server.
Combining concepts from distributed computing platforms such as the Distributed
Computing Environment (DCE) with the newly emerging paradigm of object-oriented
development, CORBA (Common Object Request Broker Architecture) was created. Instead
of providing servers, which expose large numbers of remotely accessible functions, the
functionality was now broken down into uniquely identifiable, remotely accessible objects
that were able to manage their own state. Different objects could communicate with each
other by means of an Object Request Broker (ORB). To connect to these objects, no
knowledge of where they actually reside is necessary. Instead, an ORB provides abstraction
mechanisms, such as naming services, which take care of the runtime discovery of the
objects. Similarly to object-oriented programming, CORBA embraced the concept of
programming by interfacein fact, all CORBA objects can be implemented in various
programming languages, while their interfaces are described using a common Interface
Definition Language (IDL).

Technically very elegant and sophisticated, CORBA promoted the actual reuse of live
objects but lent itself to a design with rather small entities. CORBA's vision of distributed
business objects never fully materialized because its fine-grained model often proved to be
too complex to be suitable for the purposes of enterprise-level software reuse. In addition,
CORBA programming is rather demanding for inexperienced developers because they must
cope with many complex technical concepts, such as the non-trivial language mappings of
the CORBA IDL. However, CORBA is still a widely used distribution technology, especially in
telecommunications and financial services, although we rarely see the full feature-set of
CORBA used in these applications (see Chapter 9, "Infrastructure of a Service Bus," for
more details).

As a result, the evolution of distributed infrastructures changed its direction in the mid
1990s, taking the limitations of the early distributed object architectures into
consideration. In a new attempt, the idea of clustering a set of objects into a single server
was developed to provide a higher level of abstraction and to increase the richness of the
service that such a server could offer. Driven by the high demand for more sophisticated
platforms for Internet applications, Sun Microsystems introduced Enterprise Java Beans
(EJB) in 1997. Similar to CORBA, EJB also relies on a distributed object model. However,
the EJB model is based on a controlledand therefore usually limitednumber of servers that
host the actual objects. EJB was inspired by CORBA but also by older application containers
and transaction monitors, such as CICS or Tuxedo. EJB caters for different types of objects,
including data-centric entity beans, as well as session-oriented objects. For example,
stateless session beans do not need the concept of instance identity. Another strength of
EJB is the container concept, which is responsible for the management of resources
(objects, connections, transactions, etc.) in an EJB server. Although not a new concept (the
core resource management concepts found in EJB can be traced back to CICS and other
mainframe transaction monitors), EJB put a lot of effort into making resource management
as transparent to the developer as possible. Finally, similar to other remote computing
platforms, such as DCE and CORBA, EJB includes higher-level technical services, such as
transaction management, naming services, and security.

In addition to core-application remoting technologies, such as RPC, CORBA, DCOM, and
EJB, the 1990s saw the emergence of a large number of additional distributed computing
middleware solutions, addressing distributed transaction management (e.g., the
X/open-based CORBA Object Transaction Service, the Java Transaction Service, and the
Microsoft Transaction Server), messaging (e.g., CORBA Notification and Java Messaging
Service), EAI (Enterprise Application Integration, often including message routing and
transformation, as well as application adapters), security (most notably the Secure Socket
Layer), and many other problem areas.

Although they provided a great infrastructure for the development of individual systems,
the sheer number of different distributed computing concepts, standards, and products
also caused a problem: middleware heterogeneity. Given that most of the middleware was
initially developed to address the problem of application heterogeneity, this is an ironic
development, caused by the fact that it proved to be literally impossible to impose
enterprise-wide standards for middleware in large enterprises (refer to Section 1.6 in
Chapter 1, "An Enterprise IT Renovation Roadmap").

As a result of this development, XML became popular in the mid 1990s as a
middleware-independent format for the exchange of data and documents between different
applications. XML is basically the smallest common denominator upon which the IT
industry could agree. Unlike CORBA IDL, Microsoft IDL, or Java interfaces, XML is not bound
to a particular technology or middleware standard and is often used today as an ad-hoc
format for processing data across different, largely incompatible middleware platforms.
XML does not require a heavy-weight infrastructure, such as an ORB, and it comes with a
large number of tools on many different platforms, which enables the processing and
management of XML data, including different open-source parsing APIs, such as SAX and
DOM. XML's inherent flexibility positions it as the most suitable standard for solving the
application heterogeneity problem, as well as the middleware heterogeneity problem.

However, XML's great flexibility is potentially also its biggest problem because efficient
application integration and data management requires higher-level data structures and
messaging formats. As a result, a plethora of higher-level standards that attempt to
address these issues has emerged in XML space. It took a long time for people to agree
upon even the core standards for the specification of XML-based complex data types, such
as XML DTDs and Schemas.

Recognizing the need for higher-level XML messaging standards on one hand, and
attempting to leverage the ubiquity of the Internet on the other, engineers at Microsoft
invented XML-based Web services with the creation of SOAP (Simple Object Access
Protocol) in 1998. The initial SOAP version was specifically designed to work on the widely
established HTTP Internet protocol, enabling server-to-server communication over the
infrastructure that was already established for browser-to-server communication. Given
that the established Internet infrastructure already solved many pressing problems, such
as security (SSL, firewalls, access control, etc.), load balancing, failover, and application
management, this seemed like a logical next step.

Using standard HTTP POST and GET request, SOAP clients were able to call functions using
the established Internet infrastructure. Microsoft later also developed an interface
definition language for SOAP services called WSDL (Web Service Definition Language).
WSDL describes the service interface, much as IDL describes the object interface when
using CORBA. With the problem of middleware heterogeneity in mind, SOAP and WSDL are
designed to enable the definition of various bindings to different lower-level
communication protocols, for example, to enable SOAP communication over an existing
messaging middleware. SOAP was carried forward by IBM and Microsoft and became a W3C
recommendation in 2001.

As we see later in this book, XML-based Web services (e.g., based on SOAP and WSDL) can
be a great platform for a Service-Oriented Architecture. However, it is important to keep in
mind that Web services are not the only viable technology platform for an SOA because the
SOA architectural concepts are not dependent on a single technology platform.

The development of distributed computing architectures, such as DCE, CORBA, DCOM, EJB,
and XML Web servicesand the real-world experience won with it in large-scale application
developmentshas provided the basis for the concepts of Service-Oriented Architectures.
Similar to object orientation, which today seems to present the endpoint in the
development of programming concepts, service orientation is the result of a long
evolutionary process and has the potential to finally provide some stability in an
environment that has been constantly evolving over the past 30 years.

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

2.4. Business Computing
Although the evolution of programming languages and distributed computing eventually
provided the technical concepts that today are the first cornerstone of Service-Oriented
Architectures, it is equally important to look at the developments in business computing
that provided the content that represents the second cornerstone of Service-Oriented
Architectures: business data and business logic.

The history of computing was always closely related to solving business problems, starting
as early as 1940 with computers being used as large-scale calculators and as a
replacement for large filing cabinets. Functions that nowadays are considered "technical"
provided immediate business value in the advent of computing.

The following decades created further levels of abstraction, making it easier to think of a
computer in terms of a provider for business services. However, business computing
maintained its focus on mainframe computers. Most software was custom-built, originally
written in machine language and later in functional languages such as COBOL or FORTRAN.
Yet business computing proved a crucial success factor for enterprises. For example,
logistics companies used computers to compute routes for shipments through their vast
international transport networks. Retail giant Wal-Mart was among the first to create
custom-made supply-chain management systems to optimize the purchase and
distribution of goods.

In the 1970s, the original homegrown filing cabinet applications were gradually replaced
using fully fledged database systems, including relational databases, which encapsulate
the storage of complex interrelated data. Although today we regard the storage mechanism
itself as a technical concept, it seemed fairly business-oriented when it was created. In
fact, SQL was developed as a language that was intended to be used mainly by business
analysts, not database programmers.

In 1972, four former IBM employees founded SAP in Germany, an event that marked a
milestone for business computing. SAP introduced R/2 in 1981, the first
business-computing platform that enabled enterprise-wide real time processing of financial
data and resource planning information.

However, by the mid 1980s, corporate software development seemingly reached saturation
level. Most companies were convinced that they had achieved most of what was possible
with computing in their environment. College students were discouraged from majoring in
software development because people assumed that only maintenance would be needed in
the future, which probably would be performed in some remote offshore location.

Then computers began to reach employee desktops. Systems such as the Commodore PET
and others introduced a new concept to computing. Data was obtained from remote
storage, while computation and visualization were performed locally. This paradigm was
boosted by the huge success of the IBM PC, which was launched in 1984. Through several
stages of hardware and software development at both the client and server sides, the
client/server paradigm held steady. The focus for advancement shifted back and forth
between the two. On one hand, client computers became more powerful, sporting graphical
user interfaces and raw computational power, and networks became faster. On the other
hand, database vendors worked hard to add value to their systems by providing fault
tolerance, scalability, and load balancing using cluster techniques and procedures that
were executed within the database.

Driven by an increasing economical globalization and new manufacturing models such as
Just-in-Time production, the supply and distribution chains of companies became
increasingly sophisticated, relying more on complex IT systems to manage these
processes. The software market reacted to this newly awakened demand in enterprise
computing by developing complex enterprise applications, such as Enterprise Resources
Planning (ERP) and Supply Chain Management (SCM). Over two decades, the market for
enterprise solutions has become increasingly complex, offering applications ranging from
Customer Relationship Management and Product Lifecycle Management to highly
specialized applications, such as applications that manage complex transportation
networks or billing systems for telecommunications companies. As a result, a plethora of
new enterprise software companies emerged, and old ones grew even bigger, including
SAP, Siebel, Oracle, PeopleSoft, J.D. Edwards, Baan, Manugistics, and others.

With the emergence of the Internet, many of these companies transformed their enterprise
applications to make use of the new technology (e.g., mySAP) and to cater for new
business models in the area of eCommerce and B2B. New companies, such as
salesforce.com, emerged even after the heydays of the Internet were over, taking on
established companies such as Siebel by delivering its applications entirely over the
Internet.

However, the availability of new enterprise software often caused as many problems as it
aimed to solve. Often, ERP, CRM, and Enterprise Portal solutions competed within a single
organization to become the central repositories of business data and processes. Keeping in
mind that as late as 1990, most enterprise IT systems served no more than a single
department, it comes as no surprise that many challenges emerged on the organizational
level along with a huge demand for Enterprise Application Integration (EAI). However,
suffering from problems similar to the Enterprise Software Bus model, the EAI-typical
hub-and-spoke model was often limited to solve the problems of individual application
integration projects, failing to deliver a more holistic view to the problems of having to
integrate across organizational boundaries.

An enterprise SOA aims to leverage the business logic and data that resides in the many
applications, databases, and legacy systems of today's enterprises, offering them a
sustainable strategy for flexibly adapting their IT systems to changes in functional
requirements and business strategy without imposing onto them the use of a single
middleware or EAI platform. The services exposed in an SOA are intended to be mapping
directly to business entities, thus enabling enterprise integration on the business level, not
the technical level.

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

2.5. Conclusion
This chapter looked at the historical developments of programming languages, distribution
technology, and business computing and how each of these areas contributed to the
development of service orientation.

The evolution of programming languages has not only provided us with more productive
development platforms but has also significantly contributed to the understanding of
interfacing techniques and access patterns for services in an SOA. A key lesson learned is
that not all programming language concepts are suitable in distributed computing and that
service orientation is a deliberate step back from object orientation, aiming to provide more
coarse-grained components with simpler access patterns.

The evolution of distribution technology has given us a variety of remote access
technologies from which we can choose today, together with an infrastructure for
transaction management, security, load-balancing, failover, and other critical features.

Finally, the evolution of business computing has lead to the development of advanced
enterprise applications, such as ERP and CRM, which are today providing the content that
represents the second cornerstone of an SOAthe data and business logic that brings our
services to life.

References

[Myers76] Myers, Glenford J. Composite/Structured Design. Van Nostrand Reinhold Co.
1976.

[Gold83] Goldberg, Adele and David Robson . Smalltalk-80: The Language and its
Implementation. Addison-Wesley. 1983.

[Kirk89] Kirkerud, Bjorn . Object-Oriented Programming with Simula. Addison-Wesley.
1989.

[Stro85] Stroustrup, Bjarne . The C++ Programming Language. Addison-Wesley. 1991.

URLs

http://www.m-w.com

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.m-w.com
http://www.processtext.com/abcchm.html
http://www.m-w.com
http://www.processtext.com/abcchm.html

Chapter 3. Inventory of Distributed
Computing Concepts
Before examining SOA elements in detail in the following chapters, we will review existing
concepts of distributed computing. This is important because we are not planning to
develop an SOA from scratch. Instead, an SOA will have to incorporate existing middleware
technologies and distributed computing concepts. This is particularly important because
earlier attempts to replace existing middleware with a new, ubiquitous software bus (e.g.,
CORBA) have failed, and a successful SOA will have to embrace existing and upcoming
technologies instead of replacing or precluding them. Many authors cover the intrinsic
details of communication networks and middleware, such as Tanenbaum [Tan2002,
Tan2003] and Coulouris [Cou2001]. Aiming our discussion at the application architecture
level, we will provide only a brief overview of the most fundamental communication
middleware concepts here (including Remote Procedure Calls, Distributed Objects, and
Message-Oriented Middleware), followed by a more detailed discussion on the impact that
different types of communication middleware have on the application level (including
synchrony, invocation semantics, and application coupling).

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

3.1. Heterogeneity of Communication Mechanisms
Techniques for the distribution of enterprise software components are manifold. As will be
seen in the remainder of this book, this heterogeneity is inevitable due to the various
communication requirements of enterprises.

The situation is comparable to communication in real lifemany forms of communication
exist (verbal, non-verbal, written, etc.), and every form has its own purpose. It is not
possible to replace one form with another without reducing expressiveness.

Figure 3-1 depicts three possible levels of heterogeneity of distribution techniques:

• Communication mode

• Products

• Additional runtime features

Figure 3-1. Distribution techniques for enterprise applications are
characterized by manifold requirements and consequently by various

dimensions of heterogeneity.
[View full size image]

Communication modes are basically distinguished between synchronous and asynchronous
mechanisms. Evidently both are required in real-world projects. However, in practice, there
are usually numerous variants of these basic modes of communication. Obviously, one can
encounter numerous products that provide distribution mechanisms. In addition, a concept
that is supposed to cover all the distribution issues of an enterprise must also provide a set
of additional runtime features such as security support, fault tolerance, load balancing,
transaction handling, logging, usage metering, and auditing.

It should be noted that our classification scheme is arbitrary. It is possible to define other
classifications or to find additional levels of heterogeneity. However, independent of the
classification scheme, it is true that enterprise distribution techniques tend to create
heterogeneity at different levels.

From a technical point of view, this scenario leads to three different layers, as shown in
Figure 3-2. The first layer contains the core assets of the enterprise application landscape,
including all business logic. The second layer provides technology-dependent adapters that
connect the core assets to various software busses. Finally, the third layer represents the
sum of the enterprise's communication facilities.

Figure 3-2. Technology-dependent adapters connect participants of an
enterprise application landscape with its communication

infrastructure.

The remainder of this chapter focuses on the second layer. Chapters 4 to 7 provide an
in-depth discussion of the first layer, while Chapter 9 discusses the third layer.

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.2. Communication Middleware
A communication middleware framework provides an environment that enables two
applications to set up a conversation and exchange data. Typically, this exchange of data
will involve the triggering of one or more transactions along the way. Figure 3-3 shows how
this middleware framework acts as an intermediary between the application and the
network protocol.

Figure 3-3. A communication middleware framework isolates the
application developers from the details of the network protocol.

In the very early days of distributed computing, the communication between two
distributed programs was directly implemented based on the raw physical network
protocol. Programmers were involved with acute details of the physical network. They had
to create network packets, send and receive them, acknowledge transmissions, and handle
errors. Therefore, a lot of effort was spent on these technical issues, and applications were
dependent on a specific type of network. Higher-level protocols such as SNA, TCP/IP, and
IPX provided APIs that helped reduce the implementation efforts and technology
dependencies. They also provided abstraction and a more comfortable application
development approach. These protocols enabled programmers to think less in terms of
frames at OSI layer 2 or packets at layer 3 and more in terms of communication sessions
or data streams. Although this was a significant simplification of the development of
distributed applications, it was still a cumbersome and error-prone process. Programming
at the protocol layer was still too low-level.

As the next evolutionary step, communication infrastructures encapsulated the technical
complexity of such low-level communication mechanisms by insulating the application
developer from the details of the technical base of the communication. A communication
middleware framework enables you to access a remote application without knowledge of
technical details such as operating systems, lower-level information of the network
protocol, and the physical network address. A good middleware framework increases the
flexibility, interoperability, portability, and maintainability of distributed applications.
However, it is the experience of the recent two decades that the developer's awareness of
the distribution is still crucial for the efficient implementation of a distributed software
architecture. In the remainder of this chapter, we will briefly examine the most important
communication middleware frameworks.

3.2.1. RPC

Remote Procedure Calls (RPCs) apply the concept of the local procedure call to distributed
applications. A local function or procedure encapsulates a more or less complex piece of
code and makes it reusable by enabling application developers to call it from other places
in the code. Similarly, as shown in Figure 3-4, a remote procedure can be called like a
normal procedure, with the exception that the call is routed through the network to another
application, where it is executed, and the result is then returned to the caller. The syntax
and semantics of a remote call remain the same whether or not the client and server are
located on the same system. Most RPC implementations are based on a synchronous,
request-reply protocol, which involves blocking the client until the server replies to a
request.

Figure 3-4. RPC stubs and libraries enable location transparency,
encapsulate the functional code for the RPC communication

infrastructure, and provide a procedure call interface.

The development of the RPC concept was driven by Sun Microsystems in the mid 1980s
and is specified as RFC protocols 1050, 1057, and 1831. A communication infrastructure
with these characteristics is called RPC-style, even if its implementation is not based on
the appropriate RFCs.

It is interesting to note that the need to provide platform-independent services was one of
the main drivers in the development of RPC-style protocols. Particularly, the widely used
SUN RPC protocol (RFC 1057) and its language bindings were developed to enable
transparent access to remote file systems. NFS (RFC 1094) was implemented on top of
SUN RPC and is one of the most popular ways to enable networked file system access in
Unix-like environments.

At the end of the 1980s, DCE (Distributed Computing Environment) emerged as an
initiative to standardize the various competing remote procedure call technologies. DCE
also adds some higher-level services such as security and naming services. However, for
reasons that were mainly political, DCE failed to win widespread industry support.

3.2.2. DISTRIBUTED OBJECTS

In the early 1990s, object-oriented programming emerged as a replacement for the
traditional modular programming styles based on procedure or function calls.
Consequently, the concept of Distributed Objects was invented to make this new
programming paradigm available to developers of distributed applications.

Typically, Distributed Objects are supported by an Object Request Broker (ORB), which
manages the communication and data exchange with (potentially) remote objects. ORBs
are based on the concept of Interoperable Object References, which facilitate the remote
creation, location, invocation, and deletion of objects (see Figure 3-5) often involving
object factories and other helper objects. By doing so, ORB technology provides an
object-oriented distribution platform that promotes object communication across machine,
software, and vendor boundaries. ORBs provide location transparency and enable objects to
hide their implementation details from clients.

Figure 3-5. ORBs enable client applications to remotely create, locate,
and delete server objects (e.g., through factory objects) and
communicate with them through remote method invocations.

The most common ORB implementations are CORBA, COM/DCOM, and RMI. While RMI is
limited to Java and COM/DCOM is restricted to Microsoft platforms, CORBA spans multiple
platforms and programming languages.

Today, most enterprise architectures embody object-oriented components (such as for the
implementation of graphical user interfaces), but there is rarely an enterprise architecture
that is built purely on object technology. In most cases, legacy applications based on
programming languages such as COBOL or C are critical parts of an enterprise application
landscape (some people prefer the term software assets over legacy software). It is
therefore vital that a component that should be reused on an enterprise-wide level
provides an interface that is suitable both for object-oriented and traditional clients. This is
particularly true for the service of an SOA.

In this context, it is important to understand that object-oriented applications typically
come with a fine-grained interaction pattern. Consequently, applying the object-oriented
approach to building distributed systems results in many remote calls with little payload
and often very complex interaction patterns. As we will see later, service-oriented systems
are more data-centric: They produce fewer remote calls with a heavier payload and more
simple interaction patterns.

Nevertheless, it is entirely possible to use ORB technology to implement a data-oriented,
coarse-grained SOA interface. This leads to a very restricted application of the ORB
technology and typically to an RPC-style usage of the ORB (see Figure 3-6).

Figure 3-6. An ORB can be used as a communication infrastructure for
the implementation of an SOA. In this case, the advanced capabilities
of the ORB to cope with multiple instances of remote objects are not

used.

3.2.3. MOM

With the advent of IBM's MQSeries (now IBM WebSphere MQ) and Tibco Software's
Rendezvous in the middle of the 1990s, Message-Oriented Middleware (MOM) technology
became popular, and it has since become an integral part of the communication
infrastructure landscape of large enterprises.

Although there are alternative implementation approaches (e.g., UDP multicast-based
systems), the most common MOM implementations are based on the concept of message
queuing. The two key components of a message queuing system are message and queue.

Typically, a message consists of a header and a payload. The structure of the header field
is usually predefined by the system and contains network routing information. The payload
is application-specific and contains business data, possibly in XML format. Messages
typically relate to a specific transaction that should be executed upon receiving the
message. Depending on the queuing system, the name of the transaction is either part of
the header or the application payload.

The queue is a container that can hold and distribute messages. Messages are kept by the
queue until one or more recipients have collected them. The queue acts as a physical
intermediary, which effectively decouples the message senders and receivers. Message
queues help to ensure that messages are not lost, even if the receivers are momentarily
unavailable (e.g., due to a network disconnection). Email is a good example of the
application of messaging concepts. The email server decouples sender and receiver,
creating durable storage of email messages until the receiver is able to collect them. Email
messages contain a header with information that enables the email to be routed from the
sender's email server to the receiver's email server. In addition, email messages can be
sent from a single sender to a single receiver (or to multiple recipients, through mailing
lists for example), and one can receive email from multiple senders.

Message queuing systems provide similar concepts of connecting senders and receivers in
different ways (one-to-one, one-to-many, many-to-many, etc.) (see Figure 3-7). The
underlying technical concepts are typically referred to as point-to-point and
publish-subscribe models. Point-to-point represents the most basic messaging model: One
sender is connected to one receiver through a single queue. The publish-subscribe model
offers more complex interactions, such as one-to-many or many-to-many.
Publish-subscribe introduces the concept of topics as an abstraction, to enable these
different types of interactions. Similar to point-to-point, a sender can publish messages
with a topic without knowing anything about who is on the receiving side. Contrary to
point-to-point communications, in the publish-subscribe model, the message is distributed
not to a single receiver, but to all receivers who have previously indicated an interest in the
topic by registering as subscribers.

Figure 3-7. MOM decouples the creators and consumers of messages
providing concepts such as point-to-point messaging and

publish-subscribe.

Although the basic concepts of message queuing systems (message, queue, and topic) are
relatively simple, a great deal of complexity lies in the many different ways that such a
system can be configured. For example, most message queuing systems enable the
interconnection of multiple physical queues into one logical queue, with one queue
manager on the sender side and another on the receiver side, providing better decoupling
between sender and receiver. This is similar to email, where senders transmit email to their
own mail server, which in turn routes the mail to the receiver's mail server, a process that
is transparent to the users of email. Furthermore, queues can be interconnected to form
networks of queues, sometimes with intelligent routing engines sitting between the
different queues, creating event-driven applications that employ logic similar to that of
Petri nets [Rei1992].

Message queuing systems typically also provide a number of different service levels
(QoSquality of service), either associated with specific messages or specific queues. These
service levels determine, for example, the transactional capability of the message, the
send/receive acknowledge modes, the number of allowable recipients, the length of time a
message is valid, the time at which the message was sent/received, the number of times
to attempt redelivery, and the priority of the message, relative to other messages.

Generally, MOM encourages loose coupling between message consumers and message
producers, enabling dynamic, reliable, flexible, high-performance systems to be built.
However, one should not underestimate the underlying complexity of ensuring that
MOM-based systems work efficiently, a feature that is not often visible at the outset.

3.2.4. TRANSACTION MONITORS

With the rising demand for user-friendly online applications in the 1980s, transaction
monitors [1] became popular. They provide facilities to run applications that service
thousands of users. It is the responsibility of a transaction monitor to efficiently multiplex
the requirements for computing resources of many concurrent clients to resource pools.
Most importantly, they manage CPU bandwidth, database transactions, sessions, files, and
storage. Today, transaction monitors also provide the capability to efficiently and reliably
run distributed applications. Clients are typically bound, serviced, and released using
stateless servers that minimize overhead by employing a non-conversational
communication model. Furthermore, up-to-date transaction monitors include services for
data management, network access, authorization, and security.

[1] Often referred to as TP monitors, TPMs, or TX monitors.

Popular examples of transaction monitors are CICS (Customer Information Control
System), IMS (Information Management System), Encina, or Tuxedo, which all provide
facilities for remote access. A variety of different distribution concepts can be found to
support the particular strengths of respective transaction monitors.

Although it is not the intention of this book to discuss current technology and products in
detail, a short glance at IBM's CICS and IMS can provide useful insights. CICS is a
time-sharing system. Although more than 20 years old, it is still a key element of IBM's
enterprise product strategy. It is probably today's most important runtime environment for
mission-critical enterprise applications. Even today, there are new applications developed
for CICS. Native protocols such as SNA or TCP/IP and various communication
infrastructures such as object brokers and messaging middleware can be used to integrate
CICS applications with non-CICS applications [Bras2002]. One of the most common ways
to connect to a CICS application is CICS's External Call Interface (ECI). The ECI basically
provides an RPC-like library that enables remote applications to invoke CICS transaction
programs. Based on the ECI, the CICS Transaction Gateway (CTG) provides an
object-oriented interface for Java. Contrary to the CICS time-sharing concept, its
predecessor IMS was based on processing queues. Although IMS appears to be archaic, it
is still important in practice due to its base of installed transaction programs. There are
also many different ways to remotely invoke an IMS transaction program [Bras2002]. The
most popular ways are IMS Connect and MQSeries OTMA-Bridge [Lon1999]. While IMS
Connect imposes an RPC-like access to IMS transaction programs, the MQSeries
OTMA-Bridge is based on the MOM concept.

3.2.5. APPLICATION SERVERS

With the booming demand for Web applications in the dot-com era of the late 1990s, the
application server became extremely popular. An application server mediates between a
Web server and backend systems, such as databases or existing applications. Requests
from a client's Web browser are passed from the Web server to the application server. The
application server executes code that gathers the necessary information from other
systems and composes an HTML reply, which is returned to the client's browser.

An application server can be simple, such as Microsoft ASP (Active Server Pages), which
comes with IIS (Internet Information Server), or they can be complex and expensive
systems that implement load balancing, data management, caching, transaction
management, and security.

The basic functions of an application server can be described as hosting components,
managing connectivity to data sources, and supporting different types of user interfaces,
such as thin Web interfaces or fat client applications. Taking a closer look at the basic
mechanisms of an application server, one can sometimes get the impression that not much
has changed from the days of IBM CICS and VT3270 terminals, only that these days, the
user interfaces are more colorful.

When looking at the high end of application servers, notably Microsoft .NET Server, BEA
WebLogic, and IBM WebSphere, it can sometimes be difficult to find out exactly what is
still part of the core application server functionality because these companies have started
to use their respective brands to describe a very broad array of products. For example,
J2EE, the application server framework from the non-Microsoft camp, started with core
application server functionality including JSP (Java Server Pages) for the dynamic
generation of HTML and EJB (Enterprise Java Beans) for managing and hosting more
complex software components. Within a couple of years, J2EE has become a complex and
sophisticated framework (see Figure 3-8).

Figure 3-8. J2EE comprises a variety of standards.

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.3. Synchrony
Synchronous and asynchronous communications are two different forms of interaction that
both require the support of a generic technology for distributed systems.

Synchronous communication is characterized by the immediate responses of the
communication partners. The communication follows a request/reply pattern that enables
the free flow of conversation, often based on the use of busy waits. Applications with user
interaction specifically require this conversational mode of interaction. Synchronous
communication requires that the client and server are always available and functioning.

Asynchronous communication is less stringent. Both communication partners are largely
decoupled from each other, with no strict request/reply pattern. Typically, one party
creates a message that is delivered to the recipient by some mediator, and no immediate
response is needed. The sender can store context information and retrieve it when the
recipient returns the call, but there is not necessarily a response. In contrast to a
synchronous request-reply mechanism, asynchronous communication does not require the
server to be always available, so this type can be used to facilitate high-performance
message-based systems.

Typically, synchronous communication is implemented by RPC-style communication
infrastructures, while asynchronous mechanisms are implemented by MOM. However, it is
entirely possible to implement synchronous communication based on MOM, and it is also
possible to build MOM-style interaction over RPC. Nevertheless, RPC is more suitable if
immediate responses are required, and MOM is the technology of choice for decoupled,
asynchronous communication.

Due to the manifold requirements of most real-world scenarios, typical enterprise systems
embody both synchronous and asynchronous communication. For this purpose, a variety of
different communication infrastructures is used, ranging from simple FTP (File Transfer
Protocol) to more advanced middleware platforms, such as RPC and MOM. In addition,
there are also communication infrastructures that support both communication modesfor
example, pipelining RPC, which supports asynchronous communication in addition to the
standard synchronous RPC communication.

To conclude this discussion on synchrony, we will provide an overview of the most common
ways of implementing synchronous and asynchronous communication with both RPC/ORB
and MOM technology. We will look at the following examples:

• Simulated synchronous services with queues

• Asynchronous one-way: fire-and-forget RPC

• Callbacks and polling services

The first example, simulated synchronous communication, can often be found in mainframe
environments, where a message queuing system has been chosen as the standard means
for remote interaction with the host, such as OS/390 with MQSeries access. This is a
common scenario in many large enterprises. Often, these companies have gone one step
further, developing frameworks on top of this combination of OS/390 and MQSeries that
enable service-like interfaces to the most widely used transactions on the mainframe. This
is done by implementing client-service wrappers that shield the underlying MQ
infrastructure from the client developer. These service wrappers often simulate
synchronous interactions with the mainframe by combining two underlying queues, one
with request semantics and the other with reply semantics, using correlation IDs to pair
messages into request/reply tuples. Effectively, this relegates the message queuing
system to playing a low-level transport function only, not generally leveraging any of the
advanced features of the messaging system. Figure 3-9 provides an overview of this
approach.

Figure 3-9. Simulated synchronous services with queues. A
correlation ID maps a reply message to the corresponding request. On

the client side, this is hidden by a service wrapper, which gives the
caller the impression of synchrony.

[View full size image]

The second example, fire-and-forget RPC, assumes an RPC or ORB implementation with
asynchronous one-way semantics: The client fires off a request to the server without
expecting an answer. This can be achieved either by defining an operation signature that
does not include any return values or by using specific features of the middleware, such as
a CORBA IDL operation using the keyword oneway. Figure 3-10 provides an overview of this
approach.

Figure 3-10. A synchronous one-way call implies fire-and-forget
semantics. The request is fired off by the client without a reply from

the server.

There are two key issues with this approach: The first is that the client has no guarantee
that the server will receive and process the request appropriately. This problem reduces
the applicability of this method significantly. The second problem is that most RPCs/ORBs
typically use a reliable communication protocol such as TCP. Sending a one-way request
through TCP generally means that the client is blocked until delivery to the server on the
TCP level has been completed. If a server is getting swamped with requests, it might
become unable to process all incoming one-way requests on the TCP layer. Effectively, this
means that the client is blocked until the server is at least able to read the request from
the network. Therefore, it is not advisable to use this approach to implement large-scale
event notification. Instead, an appropriate MOM should be chosen.

The third example, callbacks and polling services, is the most common way of decoupling
clients and server in RPC-style applications, without having to move to a fully fledged MOM
solution. The basic idea is similar to the conventional callback, as it is realized in functional
programming languages with function pointers, or in OO languages using object
references: A client sends a request to the server, and the server stores the request and
returns control back to the client (possibly sending an acknowledgment that it received the
request). After having processed the request, the server (now acting as a client) sends the
result back to the client (now acting as a server), using the standard RPC/ORB invocation
mechanism (see Figure 3-11). Sometimes, it is not possible for the client to act as a server
(e.g., due to firewall restrictions). In these cases, the client can periodically poll the server
for the availability of the result.

Figure 3-11. Callbacks and polling services: A client sends a request to
a server ("trigger"). The server stores the requested activity in a

database before replying with an acknowledgment to the client. The
server has a thread that takes pending requests from the database,
processes them, and sends back the result to the originating client

using callback.

This approach can sometimes provide a good compromise for satisfying the need to
decouple clients and servers without having to add technology such as a MOM. However,
often the implementation of such a remote callback can be more difficult than it originally
appears. This is especially true if the application requires a high degree of reliability. In
these cases, it is necessary to introduce some kind of mechanism for ensuring reliability,
such as through combining a server-side database with some kind of custom-built
acknowledgment protocol. Also, the server-side logic can become quite complex: To ensure
that all requests are eventually processed, the database must be constantly polled for
pending requests, potentially adding a huge burden on database performance. For this
reason, one should carefully weigh the use of database triggers. Here, it is important to
ensure that the execution of the trigger is not part of the same transaction that puts the
new request in the database. In this case, you could encounter a situation where the client
is blocked because it has to wait not only until the server has stored the request in the
database before returning an acknowledgment to the client, but also until the database
trigger has been executed. This will effectively eliminate the decoupling effect of the
callback implementation.

As shown in Figure 3-12, the server-side implementation can alternatively use internal
message queues to ensure an efficient means of storing incoming requests in a reliable and
efficient manner, thus avoiding many of the issues with the pure-database approach
described previously.

Figure 3-12. Callbacks and queues. Similar to the previous example,
except that queues are introduced on the server side to ensure better

decoupling on the server side.

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.4. Interface Versus Payload Semantics
Typically, an interaction between a client and a server (or a sender and a receiver) results
in the execution of a transaction (or some other activity) on the receiving end. In order to
determine the type of transaction or activity that was requested by the caller (or sender), it
is necessary to specify the operation. This is normally performed in one of two ways: The
requested transaction/activity can be encoded in the operation signature of the server
component's interface, or it can be embedded in the message itself.

In the first case, the requested transaction (or other kind of activity) is defined by using
self-descriptive function names such as saveCustomer(), retrieveCustomer(), or
transferMoney(). RPC-style interfaces provide this type of semantically rich interface,
which we refer to as interface semantics (see Figure 3-13).

Figure 3-13. RPC-style interaction is typically based on interface
semantics. Every procedure call has a meaningful name that indicates

its purpose.

In the second case, the requested transaction is embedded directly into the message (see
Figure 3-14). This can be done as part of the message header (if the MOM provides such a
field as part of the message header data structure), or as part of the application specific
payload. We refer to this as payload semantics.

Figure 3-14. The name of a remote call with payload semantics has no
functional meaning in its own right. The remote functionality required
is encoded in the message that is sent. The receiver typically has to

determine the function name and the dispatch message to the
associated business function.

Payload semantics is widely used in the context of MOMs that provide APIs with functions
such as MQGET()/MQPUT() or sendMessage()/onMessage()/receiveMessage() for the
clients and servers to communicate with each other. The semantics of these functions is
purely technical (see Figure 3-15).

Figure 3-15. MOM is generally based on payload semantics. Functions
such as sendMessage()sendMessage()sendMessage()sendMessage() and processMessage()processMessage()processMessage()processMessage() are purely technical,

without any business semantics.

Interface semantics provide users with well-defined interfaces that are intuitive and easy
to understand. Changes to these interfaces require modifications to all applications that
depend on the particular interface, even if they do not depend on the operation or
argument that was added or changed. Payload semantics, on the other hand, result in
systems where changes to message formats can have a potentially lesser impact on the
different components of the system. New functionality can easily be added to a system by
creating new messages types. Consumers that are not dependent on the new messages
types remain unaltered. Thus, payload semantics results in a weaker coupling at the type
level.

The choice of interface semantics versus payload semantics is not an obvious one, as each
approach has its pros and cons. Strongly typed languages, such as Java, limit the flexibility
of the programmer by applying strict type checking at compile time. Almost all
dependencies caused by the change of a type in the system can be discovered at compile
time, thus significantly reducing the number of runtime errors. Weakly typed languages,
such as TCL, offer much more flexible data manipulation, often based on string
manipulation. These types of languages are generally used for scripting, especially in Web
environments, where fast results are required.

However, the application of interface semantics and payload semantics cannot be viewed in
black-and-white terms. While RPCs are not restricted to pure functional call semantics,
neither are MOMs limited to payload semantics. This can be illustrated with one insightful
example. Consider an RPC call such as transferMoney(). The transmitted data can
significantly contribute to the determination of the code that is executed:

String transferMoney (amount: decimal; cur, accFrom, accTo: String);
{
 switch (cur)
 case 'EUR':
 handleEurTransfer (amount, accFrom, accTo);
 case 'GBP':
 handleGbpTransfer (amount, accFrom, accTo);
 case 'USD':
 handleUsdTransfer (amount, accFrom, accTo);

 . . .
}

Going one step further, it is possible to remove all interface semantics from an RPC-style
interface. In the following example, a service supports exactly one function,
executeService(). This function has only one parameter, a plain string. This string
encodes all functional parameters and the requested functionality:

String executeService (message: String);
{
 int i = determineFunctionNumber (message);

switch (i)
 case 1:
 handleCase1 (message);
 case 2:
 handleCase2 (message);
 case 3:
 handleCase3 (message);
 . . .
}

3.4.1. DOCUMENT-CENTRIC MESSAGES

With the emergence of self-descriptive data structures such as XML, an approach to
handling message types referred to as document-centric has become popular.
Document-centric messages are semantically rich messages where the operation name, its
parameters, and the return type are self-descriptive. However, the passed parameters and
returned object can be extremely flexible and can include any number of optional
parameters. SOAP (Simple Object Access Protocol) is a technology that is particularly
suitable for this type of solution. As long as the underlying XML Schemas impose only loose
constraints on the document structure, the parameters can be extended in any manner
required without breaking compatibility with previous software versions. Consider the
following example that describes the booking of a flight. It is straightforward to enhance
the protocol with additional parameters, such as the time of day of the flight, the date and
time of arrival, or the verbose names of the airports. As long as these fields are not
required, the previous version of the protocol, in addition to all software that relies on that
version, remains totally valid. Because this type of communication includes a structured
document in both reply and response, it is called document-driven communication:
[View full width]

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns

:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001

/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns1:bookFlight xmlns:ns1="http://www.openuri.org/">
 <ns1:inbound>
 <ns1:flightNumber>LH400LH400LH400LH400</ns1:flightNumber>
 <ns1:flightDate>2003-11-082003-11-082003-11-082003-11-08</ns1:flightDate>
 <ns1:isConfirmed>falsefalsefalsefalse</ns1:isConfirmed>
 </ns1:inbound>
 <ns1:outbound>
 <ns1:flightNumber>LH401LH401LH401LH401</ns1:flightNumber>
 <ns1:flightDate>2003-11-172003-11-172003-11-172003-11-17</ns1:flightDate>
 <ns1:isConfirmed>falsefalsefalsefalse</ns1:isConfirmed>
 </ns1:outbound>
 <ns1:passenger>
 <ns1:Passenger>
 <ns1:firstName>KarlKarlKarlKarl</ns1:firstName>
 <ns1:lastName>BankeBankeBankeBanke</ns1:lastName>
 <ns1:birthday>1970-08-051970-08-051970-08-051970-08-05</ns1:birthday>
 </ns1:Passenger>
 </ns1:passenger>
 </ns1:bookFlight>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Page 67Page 67Page 67Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.htmlABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.htmlABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.htmlABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3.5. Tight Versus Loose Coupling
Recently, a lot of attention has focused on comparisons between loose coupling and tight
coupling approaches to application interactions. On the technology side, this has mainly
been driven by the potential of Web services to dynamically discover and bind to other
services, such as through UDDI (Universal Description, Discovery and Integration). On the
business side, this has been driven by the growing need of enterprises to increase
flexibility with respect to changes in their own business processes and the ways in which
they interact with partner companies.

Traditionally, business processes have been designed within the boundaries of an
enterprise, or even within the different business units of the enterprise. These activities
were managed with the help of detailed, real-time information. Processes that span
multiple business units or enterprises typically have to deal with a very different set of
requirements, needing a higher degree of flexibility. In these kinds of scenarios, one sees a
much higher degree of uncertainty, a much more frequent change in terms of participants
and their roles, and a constant evolution of the types of interactions required.

There appears to be a consensus that for these types of "in-flux" situations to operate, a
loosely coupled architecture is required because loose coupling is seen as helping to reduce
the overall complexity and dependencies. Using loose coupling makes the application
landscape more agile, enables quicker change, and reduces risk. In addition, system
maintenance becomes much easier. Loose coupling becomes particularly important in the
B2B world, where business entities must be able to interact independently. The
relationships between business partners often change rapidlyalliances are settled and
cancelled, and business processes between trading partners are adopted to new market
requirements. Two companies that are partners in one market might be competitors in
another market. Therefore, it is essential that the underlying IT infrastructure reflect this
need for flexibility and independence. Ideally, no business relationship should impact
anothernew business relationships should be able to be established without any effect on
existing ones. Functionality that is offered to one business partner might not necessarily be
available to others. A change that is relevant for one business partner should have no
impact on other partners. One trading partner may not cause another to block while
waiting for a synchronous response, nor may one IT system depend on the technical
availability of the IT system of a business partner.

The term coupling refers to the act of joining things together, such as the links of a chain.
In the software world, coupling typically refers to the degree to which software components
depend upon each other. However, the remaining question is: "What are these
dependencies, and to what degree can one apply the properties of tight and loose?"
Software coupling can happen on many different levels. One of the first issues is to
differentiate between build time (compile time) dependencies and runtime dependencies.
However, this is typically only sufficient when looking at monolithic applications. In a
distributed environment, we believe that in order to determine the degree of coupling in a
system, one needs to look at different levels. Table 3-1 provides an overview of these
levels and shows how they relate to the tight versus loose coupling debate.

Table 3-1. Tight Versus Loose Coupling

Level Tight Coupling Loose Coupling

Physical coupling Direct physical link required Physical intermediary

Communication style Synchronous Asynchronous

Type system Strong type system (e.g.,
interface semantics)

Weak type system (e.g.,
payload semantics)

Interaction pattern OO-style navigation of complex
object trees

Data-centric, self-contained
messages

Control of process
logic

Central control of process logic Distributed logic
components

Service discovery and
binding

Statically bound services Dynamically bound services

Platform
dependencies

Strong OS and programming
language dependencies

OS- and programming
language independent

In the following, we will examine the items in Table 3-1 in detail.

For distributed systems, the way that remote components are connected is possibly the
most obvious technical factor when looking at the problem of "coupling." A physical
intermediary enables loose coupling on this level. Therefore, MOM systems are loosely
coupled on the physical level, with message queues acting as an intermediary, decoupling
senders and receivers of messages. RPC-style applications are tightly coupled on this level
because clients and servers interact directly with each otherclients require servers to be
alive and accessible in order to interact with them.

The impact of synchronous versus asynchronous communication on the level of coupling is
often closely related to the physical linking of the distributed components, as described
previously. Asynchronous communication is generally associated with loose coupling.
However, this assumes that the underlying middleware is capable of supporting the
asynchronous communication in a loosely coupled manner. Assume a one-way RPC call:
There is still a notion of tight coupling here, even if the client does not wait for the reply of
the serverthe client will only be able to send the one-way request to the server if it is
directly connected and if the server is up and running. This is a good example for the
varying degrees of "coupledness"asynchronous communication through a proper MOM is
more loosely coupled than asynchronous one-way RPC calls.

Looking at the type system of a distributed application as the next level of "coupledness,"
we find that the stronger the type system, the stronger the dependencies between the
different components of the system. This is true not only during the application
development phase, but also (and perhaps more importantly) when changing or
reconfiguring the running system. Earlier, we differentiated between interface semantics
and payload semantics. Interface semantics provide an explicit interface and operation
names and also strongly typed arguments. Effectively, this means components are tightly
coupled together on this level because every change of an interface ripples through the
entire application, as far as dependent components are concerned. The benefit is that we
discover the affected parts of the application that need to be adapted to reflect these
changes at compile time, thus avoiding runtime exceptions due to incompatible message
formats. Payload semantics, on the other hand, enable a looser coupling of components
because message formats are generally more flexible. In some cases, message format
validation might be applied, such as through XML Schema validation. However, this
requires efficient management of the up-to-date schema definitions between participants.
Notice that the problems with changes to message formats is not eliminated by employing
payload semantics: One must still know those parts of the system that are affected by
changes in order to ensure that they can act appropriately on the new format. In many
cases, this means that the problem has simply moved from build time to runtime.

Another important factor to examine is the interaction patterns of the distributed
components. For example, an ORB-based system will typically impose an OO-style
navigation of complex object trees. The client has to understand not only the logic of each
individual object, but also the way to navigate across objects, again resulting in a fairly
tight coupling. Given that RPC-style interfaces do not enable such complex navigation, the
degree of coupling is lower when compared to a distributed object system. MOM-based
systems typically impose a much simpler interaction model, where often a single queue is
sufficient as an entry point for clients, and all input for server-side transactions is provided
in a single message.

Related to this discussion is the question of whether we generally assume that the system
is structured around RPC-style services or around queues and topics. Generally, topics and
queues provide more flexibility for changing the system at runtime by rearranging the
configuration of queues and how they are related to each other. The powerful configuration
management of most MOM systems greatly increase the "looseness" of the coupling
between system components.

Another important factor is the ownership or control of process logic. If processes are
managed centrally, this results in tight coupling between the different sub-processes and
transactions. For example, database mechanisms might be used for ensuring referential
integrity and general consistency of the data owned by the different sub-processes. This is
often the case, for example, with large, monolithic ERP (Enterprise Resource Planning)
systems. If business processes are highly distributed, as in a B2B environment, the
different sub-processes and transactions are generally more independent of each other, or
more loosely coupled, in the context of our current discussion. Often, this means that one
must accept the fact that there is no globally defined consistent process state. Similarly,
the data owned by the different participants might not always be consistentone system
might have already cancelled an order for which another system still owns an invoice.

Finally, the way in which participants in the system locate each other has a great impact
on the level of coupling in the system. Statically bound services yield very tight coupling,
whereas dynamically bound services yield loose coupling. Looking up services in a naming
or directory server reduces the tightness with which components are tied together,
although it still requires the client to know the exact name of the service to which it wants
to bind. Services such as UDDI enable a more flexible location of services, using
constraints such as "Find me the next printer on the second floor." Notice that dynamic
service discovery as provided by UDDI for Web Services is not a new concept; it has
previously been provided by other standards such as the CORBA Naming Service. Notice
also that past experience has shown that the number of applications requiring completely
dynamic service discovery has been fairly limited.

When making architectural decisions, one must carefully analyze the advantages and
disadvantages of the level of coupling. Generally speaking, OLTP-style (online transaction
processing) applications, as they are found throughout large enterprises, do not normally
require a high degree of loose couplingthese applications are tightly coupled by their
nature. When leaving the scope of a single enterprise or single business unit, especially in
B2B environments, loose coupling is often the only solution. However, in most cases, the
increased flexibility achieved through loose coupling comes at a price, due to the increased
complexity of the system. Additional efforts for development and higher skills are required
to apply the more sophisticated concepts of loosely coupled systems. Furthermore, costly
products such as queuing systems are required. However, loose coupling will pay off in the
long term if the coupled systems must be rearranged quite frequently.

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

3.6. Conclusion
Today's enterprise application landscapes are characterized by a variety of different
technologies and concepts for distribution. On one hand, this variety arises within the
enterprise organization itself for historical reasons, personal preferences of different people,
and the dynamics of acquisitions and mergers. As a matter of fact, many redundant
concepts exist within the same organizational unit. On the other hand, complementary
concepts and technologies also exist. Due to the requirements of different types of
distribution problems that coexist in one corporation, different solutions arise as well.

A modern architecture must be able to embrace all these technologies and concepts.
Heterogeneityincluding heterogeneity of middlewaremust be understood as a fundamental
fact that cannot be fought but instead must be managed. Furthermore, an architecture
must accommodate frequent changes of the underlying distribution infrastructure. As a
matter of fact, the lifecycles of today's infrastructure products are largely incompatible with
the lifecycles of enterprise applications. Thus, you must protect the assets of an existing
application landscape and simultaneously take advantage of the latest infrastructure
products.

In this chapter, we have discussed the necessity of carefully choosing the right approach to
integrating two distributed software components. Among other issues, you must decide on
the appropriate communication infrastructure, synchrony, call semantics, usage of an
intermediary, and object-oriented versus data-centric interfaces. All these decisions impact
the coupling of the two systems.

References

[Bras2002] Braswell, Byron, George Forshay, and Juan Manuel Martinez . IBM Web-to-Host
Integration Solutions, 4th ed. IBM Redbook SG24-5237-03, 2002.

[Lon1999] Long, Rick, Jouko Jäntti, Robert Hain, Niel Kenyon, Martin Owens, and André
Schoeman . IMS e-business Connect Using the IMS Connectors. IBM Redbook
SG24-5427-00, 1999.

[Tan2003] Tanenbaum, Andrew S. Computer Networks, 4th ed. Prentice-Hall, 2003.

[Tan2002] Tanenbaum, Andrew S. and Maarten van Steen . Distributed Systems:
Principles and Paradigms. Prentice-Hall, 2002.

[Cou2001] Coulouris, George, J. Dollimore, and T. Kindberg . Distributed Systems
Concepts and Design, 3rd ed. Addison-Wesley, 2001.

[Rei1992] Reisig, Wolfgang . A Primer in Petri Net Design. New York: Springer Compass
International, 1992.

URLs

http://www.rfc-editor.org

http://www.omg.org

http://www.microsoft.com/com

http://java.sun.com/j2ee

http://www.bea.com

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.rfc-editor.org
http://www.omg.org
http://www.microsoft.com/com
http://java.sun.com/j2ee
http://www.bea.com
http://www.rfc-editor.org
http://www.omg.org
http://www.microsoft.com/com
http://java.sun.com/j2ee
http://www.bea.com
http://www.processtext.com/abcchm.html

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Part I: Architectural Roadmap
The first part of this book describes the architectural roadmap to the service-enabled
enterprise. We define the term Service-Oriented Architecture (SOA), provide a
classification of service types, describe the different expansion stages of a SOA, show how
to address key issues such as business processes and transactions, outline a service bus
infrastructure, and describe how to use the different SOA concepts in real-world
applications.

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 4. Service-Oriented Architectures
This chapter provides a definition of Service-Oriented Architecture and introduces its key
conceptsnamely, application frontend, service, service repository, and service bus. It lays
the conceptual foundation for a more in-depth discussion about the ways in which SOAs
help address the specific issues of enterprise applications that are covered in Chapter 5,
"Services as Building Blocks," and Chapter 6, "The Architectural Roadmap."

Section 4.1 gives a general definition of the term architecture as we use it throughout this
book. Section 4.2 defines the term Service-Oriented Architecture. Section 4.3 describes
elements of a Service-Oriented Architecture, such as application frontends, services, the
service repository, and the service bus in detail.

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.1. What Is a Software Architecture?
The literature in our field provides many different definitions of software architecture.
Booch, Rumbaugh, and Jacobson [BRJ99] claim that "An architecture is the set of
significant decisions about the organization of a software system . . ." Brass, Clements, and
Kazman define software architecture in [BCK03]: "The software architecture of a program
or computing system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships among
them." The IEEE Standard 610.12-1990 claims that "Architecture is the organizational
structure of a system." Fowler characterizes architecture in [Fow02]: "'Architecture' is a
term that lots of people try to define, with little agreement. There are two common
elements: One is the highest-level breakdown of a system into its parts; the other,
decisions that are hard to change." You can find even more definitions at
http://www.sei.cmu.edu/architecture/definitions.html.

For our purposes, we define software architecture in the sidebar, "Definition of Software
Architecture."

Definition of Software Architecture

A software architecture is a set of statements that describe software components
and assigns the functionality of the system to these components. It describes
the technical structure, constraints, and characteristics of the components and
the interfaces between them. The architecture is the blueprint for the system
and therefore the implicit high-level plan for its construction.

In this book, we will also use the terms application and application landscape. An
application is a set of software components that serves a distinctive purpose, and an
application landscape is the sum of all applications of an organization. Ideally, all
applications of an application landscape comply with a single architectural blueprint.
However, in practice, they usually don't. We also casually use one particular phrase:
"Software component X belongs to architecture Y." More precisely, this phrase means:
"Software component X belongs to an application landscape which is designed according to
an architecture Y."

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sei.cmu.edu/architecture/definitions.html
http://www.processtext.com/abcchm.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.processtext.com/abcchm.html

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.2. What Is a Service-Oriented Architecture?
Now we introduce the basic concepts of SOAs as we use them in the remainder of this
book. As we previously emphasized, this book focuses on enterprise architectures and their
specific characteristics. Consequently, we will also discuss the specific characteristics of
SOAs.

As we mentioned earlier, an SOA is based on four key abstractions: application frontend,
service, service repository, and service bus (see Figure 4-1). Although the application
frontend is the owner of the business process, services provide business functionality that
the application frontends and other services can use. A service consists of an
implementation that provides business logic and data, a service contract that specifies the
functionality, usage, and constraints for a client [1] of the service, and a service interface that
physically exposes the functionality. The service repository stores the service contracts of
the individual services of an SOA, and the service bus interconnects the application
frontends and services.

[1] A client can either be an application frontend or another service.

Figure 4-1. Services and application frontends are the major artifacts
of an SOA. In addition, we also have a service repository and service

bus.

Definition of Service-Oriented Architecture

A Service-Oriented Architecture (SOA) is a software architecture that is based on
the key concepts of an application frontend, service, service repository, and
service bus. A service consists of a contract, one or more interfaces, and an
implementation.

The whole concept of an SOA focuses on the definition of a business infrastructure. When
we use the term "service," we have in mind a business service such as making airline
reservations or getting access to a company's customer database. These services provide
business operations such as get reservation, cancel booking, or get customer profile. Unlike
business services, technical infrastructure services, such as a persistency service or a
transaction service, provide operations such as begin transaction, update data, or open
cursor. Although this kind of technical functionality is very useful when it comes to
implementing a business operation, it has little strategic relevance from the SOA point of
view. More generally, technology must not have any impact on the high-level structure of
the application landscape or cause dependencies between components. Actually, the SOA
must decouple business applications from technical services and make the enterprise
independent of a specific technical implementation or infrastructure.

The application frontends are the active elements of the SOA, delivering the value of the
SOA to the end users. Nevertheless, you must always take into account that the services
provide structure to the SOA. Although the services can often remain unaltered, the
application frontends are subject to change, as are the business processes of the
enterprises. Consequently, the lifecycle of application frontends is much shorter than the
lifecycle of the underlying services. This is why we regard services as the primary entities
of strategic importance in an SOA (see Figure 4-2).

Figure 4-2. The estimated lifecycles of data, services, application
frontends, and technologies are different.

[View full size image]

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4.3. Elements of a Service-Oriented Architecture
In this section, we take a closer look at the key elements of the SOA, including the
application frontend, services, the service repository, and the service bus.

4.3.1. APPLICATION FRONTENDS

Application frontends are the active players of an SOA. They initiate and control all activity
of the enterprise systems. There are different types of application frontends. An application
frontend with a graphical user interface, such as a Web application or a rich client that
interacts directly with end users, is the most obvious example. However, application
front-ends do not necessarily have to interact directly with end users. Batch programs or
long-living processes that invoke functionality periodically or as a result of specific events
are also valid examples of application frontends.

Nevertheless, it is entirely possible that an application frontend delegates much of its
responsibility for a business process to one or more services. Ultimately, however, it is
always an application frontend that initiates a business process and receives the results.

Application frontends are similar to the upper layers of traditional multilayer applications.
Although you might expect that services more closely resemble the lower layers, this is not
the case. The following chapters demonstrate that services have a different structure,
which is characterized by vertical slicing.

4.3.2. SERVICES

A service is a software component of distinctive functional meaning that typically
encapsulates a high-level business concept. It consists of several parts (see Figure 4-3).

Contract. The service contract provides an informal specification of the purpose,
functionality, constraints, and usage of the service. The form of this specification can vary,
depending on the type of service. One non-mandatory element of the service contract is a
formal interface definition based on languages such as IDL or WSDL. Although it is not
mandatory, a formal service interface definition adds a significant benefit: It provides
further abstraction and independence of technology, including programming language,
middleware, network protocol, and runtime environment. However, it is important to
understand that the service contract provides more information than a formal specification.
The contract can impose detailed semantics on the functionality and parameters that is not
subject to IDL or WSDL specifications. In reality, many projects must cope with services
that cannot provide formal service interface descriptions. [2] In these cases, the service can
deliver access libraries or a detailed technical description at the network protocol level.
However, it is important to understand that every service requires a service
contractparticularly if no formal description based on a standard such as WSDL or IDL is
available.

[2] Notice that the key task of a project aiming to introduce SOAs at the enterprise level is often not to implement new business
functionality, but rather to identify suitable existing application modules and components and wrap them with service interfaces with the
appropriate level of functionality and granularity, thus making them available as services in an easier-to-use and better documented
manner.

Interface. The functionality of the service is exposed by the service interface to clients
that are connected to the service using a network. Although the description of the interface
is part of the service contract, the physical implementation of the interface consists of
service stubs, which are incorporated into the clients [3] of a service and dispatcher.

[3] Application frontends or other services.

Implementation. The service implementation physically provides the required business
logic and appropriate data. It is the technical realization that fulfills the service contract.
The service implementation consists of one or more artifacts such as programs,
configuration data, and databases.

Business logic. The business logic that is encapsulated by a service is part of its
implementation. It is made available through service interfaces. However, programming
against interfaces is desirable, whether or not one applies a service-oriented approach.

Data. A service can also include data. In particular, it is the purpose of a data-centric
service (see Chapter 5).

Figure 4-3. A service consists of both data and business logic along
with interfaces and their descriptions.

As previously discussed, services are not just the encapsulation of some code of the former
lower layers of applications. Every service is an entity of distinctive functional meaning that
typically encapsulates a high-level business entity. Services impose a strong vertical slicing
of the application that defines the coarse-grained structure of the whole system, similarly
to component-oriented software design. Therefore, from the client perspective, a service is
a black box entity.

4.3.3. SERVICE REPOSITORY

A service repository provides facilities to discover services and acquire all information to
use the services, particularly if these services must be discovered outside the functional
and temporal scope of the project that created them. Although much of the required
information is already part of the service contract, the service repository can provide
additional information, such as physical location, information about the provider, contact
persons, usage fees, technical constraints, security issues, and available service levels.

It should be noted that we focus on service repositories that are mainly used for purposes
within the boundaries of a single enterprise. Repositories that are used for cross-enterprise
service integration typically have different requirementsin particular, those repositories
that are made public through the Internet. These requirements can comprise legal issues
(terms and conditions of usage), style of presentation, security, user registration, service
subscription, billing, and versioning.

Obviously, a service repository is a very useful element of an SOA. Although you can build
an SOA and achieve many of its benefits without establishing a service repository, a
repository is indispensable in the long term. An architecture can cope without a repository
if the scope of a service is just one project, if it has very few services, or if all projects are
staffed with the same team members. In reality, though, most enterprise scenarios are
characterized by many concurrent projects, changing teams, and a variety of services.

A service repository can be arbitrarily simple; at one extreme, no technology might be
required. A batch of printed service contracts located in an office and accessible by all
projects is already a valid service repository. However, better ways exist to provide this
information while retaining the simplicity of the repository. Often, you'll find a type of
proprietary database that contains some formalized administrative data and a more or less
formal service contract for every version of a service.

In some cases, companies have developed their own tools that automatically generate the
service description from the formal service definitions (e.g., an HTML generator that takes
WSDL as input, similar to a JavaDoc generator). This is particularly useful if the formal
service definition is annotated with additional information about the service. Notice that
this information is typically very different from the meta-information provided for low-level
APIs, such as Java classes. This is due to the different roles that service definitions play in
an SOA. Services typically are more coarse-grained, self-contained, and capable of
supporting different usage patterns. In particular, services are typically not linked as in
code libraries but are bound to at runtime. All the preceding results in different
documentation requirements. The following are examples of information that should be
contained in an enterprise-wide service repository:

• Service, operation, and arguments signatures, such as in the form of WSDL and XML
Schema definitions.

• Service owner. In an Enterprise SOA, owners can operate at the business level
(responsible for questions and change requests on the functional level),
development level (responsible for technical questions and change requests), and
operations level (responsible for questions regarding the best ways to link to a
service, or operational problems).

• Access rights, such as information about access control lists and the underlying
security mechanism, or a description of the process that must be followed within the
enterprise so that a new system can utilize a particular service.

• Information about the intended performance and scalability of the service, including
average response times, and potential throughput limitations. This can be
summarized as part of a generic SLA (Service Level Agreement) template.

• Transactional properties of the service and its individual operations. This includes
information on the read/write/update characteristics, whether the operation is
idempotent, and associated compensation logic (see Chapter 8, "Process Integrity,"
for more details).

Manage Your Service Repository Centrally

To provide a service repository with high quality services, consider setting up an
architecture board. The architecture board's responsibility is to perform constant
maintenance, monitoring, and coordination from a central location. It must
manage the repository and carefully review the service entries it contains. This
includes the fundamental design of the service itself, as well as its description in
the service repository. Consequently, the architecture board must be involved
from the outset of the development of new services in order to coordinate the
service specification across different projects and business units, and it must
ensure that a good compromise between ease of implementation, usability, and
reusability can be achieved.

It is important to distinguish between development time and runtime binding of services.
Binding refers to the way in which service definitions and service instances are located,
incorporated into the client application, and finally bound to at the network level.

4.3.3.1 Development-Time Binding

If services are discovered and bound to at development time, the signatures of the service
operations are known in advance, as well as the service protocol and the physical location
of the service (or at least the exact name of the service in a directory service). Figure 4-4
describes a process in which services are bound to at development time.

Figure 4-4. Development time discovery imposes a fairly simple
model. The developer is responsible for locating all required

information from the service repository in order to create a client that
interacts correctly with the service instance.

[View full size image]

Although development time binding is quite a simple model, it is sufficient for most
purposes. It enables projects to identify functionality that has been created by former
projects and to reuse these services.

4.3.3.2 Runtime Binding

Runtime binding is far more complex than development time binding. One can differentiate
between different levels of runtime binding:

Runtime service lookup by name. This is the most straightforward case, and it is also
the most commonly used means of dynamically binding to services: The service definition
is known at development time, and the client logic is developed accordingly. The client is
enabled to dynamically bind to different service instances by looking up services with
specific names in a directory. For example, a client application looks up printing services
with different names, depending on the printer name selected by the user.

Runtime service lookup by properties. This is similar to the preceding, except that
services are discovered by properties, not by name. For example, a printing service can
search a service repository for three different predefined printing service interfaces it
understands, together with other properties such as location of the printer ("FLOOR == 2")
and document formats that the printer is able to print ("DOCTYPE == PostScript").

Runtime service discovery based on reflection. In the final case, the actual
specification of the service definition is not known at development time. Assume that a
client discovers a service with the right properties ("FLOOR == 2 AND DOCTYPE ==
PostScript") but with an unknown printing service interface. In this case, some kind of
reflection mechanism [4] must be implemented at the client side, which enables the client to
dynamically discover the semantics of the service and the format of valid requests. This
type of service discovery is the most complex and least widely used because it requires
very complex logic to dynamically interpret the semantics of unknown service interfaces. [5]

[4] Similar to mechanisms that are used in many object-oriented programming languages, such as Java's reflection mechanism.

[5] Notice that there is a case in between, where systems have to cope with many similar yet different message types, such as 12 different
formats of a customer data record. A number of existing EAI tools (e.g., in Microsoft Biztalk Server) enable the user to graphically match
fields in different data structures, providing runtime translation between these incompatible data formats. However, these mappings
between data structures are provided at development time and are not dynamically determined by the system at runtime.

Runtime service binding that goes beyond the complexity of dynamic service lookup by
properties with predefined service interfaces is very rare and is limited to very few
application domains. A rare example for a problem domain that really requires highly
dynamic service binding is in the wireless world, such as a Bluetooth application: Bluetooth
clients dynamically discover services based on location and other properties. But again,
even in this scenario, Bluetooth clients typically support a limited set of predefined
services.

Make Service Binding as Simple as Possible

Always aim to make service binding as simple as possible because the level of
complexity and risk increases exponentially with the level of dynamics in the
service binding process. Service lookup by name with predefined service
interfaces represents the best trade-off between flexibility and implementation
complexity in the majority of cases.

4.3.4. SERVICE BUS

A service bus connects all participants of an SOAservices and application frontendswith
each other. If two participants need to communicatefor example, if an application frontend
needs to invoke some functionality of a basic servicethe service bus makes it happen. In
this respect, the service bus is similar to the concept of a software bus as it is defined in
the context of CORBA. However, significant differences exist between these concepts. Most
importantly, the service bus is not necessarily composed of a single technology, but rather
comprises a variety of products and concepts.

An in-depth discussion of the service bus is found in Chapter 9, "Infrastructure of a Service
Bus." For the time being, it will suffice to highlight the following characteristics of a service
bus:

Connectivity. The primary purpose of the service bus is to interconnect the participants of
an SOA. It provides facilities that enable the participants of an SOAapplication frontends
and servicesto invoke the functionality of services.

Heterogeneity of technology. The service bus must embrace a variety of different
technologies. The reality of enterprises is characterized by heterogeneous technologies.
Consequently, the service bus must be able to connect participants that are based on
different programming languages, operating systems, or runtime environments.
Furthermore, you will usually find a multitude of middleware products and communication
protocols in the enterprise, and all this must be supported by the service bus.

Heterogeneity of communication concepts. Similar to the heterogeneity of
technologies, the service bus must also embrace a variety of different communication
concepts. Due to the divergent requirements of different applications, the service bus must
enable different communication modes. Obviously, you must at least have facilities for
synchronous and asynchronous communication.

Technical"services." Although the purpose of the service bus is primarily communication,
it must also provide technical services such as logging, auditing, security, message
transformation, or transactions.

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

4.4. Conclusion
In this chapter, we introduced the key concepts of Service-Oriented Architecture.

We began our discussion with a general definition of software architecture:". . . set of
statements that describe software components and assigns the functionality of the system
to these components. It describes the technical structure, constraints, and characteristics
of the components and the interfaces between them . . ." The definition of an SOA is based
on this definition. It states that "A Service-Oriented Architecture (SOA) is a software
architecture that is based on the key concepts application frontend, service, service
repository, and service bus."

References

[BCK03] Bass, Len, Paul Clements, and Rick Kazman . Software Architecture in Practice.
Addision-Wesley, 2003.

[BRJ99] Booch, Grady, James Rumbaugh, and Ivar Jacobson . Unified Modeling Language
User Guide. Addision-Wesley, 1999.

[Fow02] Fowler, Martin . Patterns of Enterprise Application Architecture. Addision-Wesley,
2002.

URLs

http://www.sei.cmu.edu/architecture/definitions.html

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.sei.cmu.edu/architecture/definitions.html
http://www.processtext.com/abcchm.html
http://www.sei.cmu.edu/architecture/definitions.html
http://www.processtext.com/abcchm.html

Chapter 5. Services as Building Blocks
The focus of a Service-Oriented Architecture is on the functional infrastructure and its
business services, not the technical infrastructure and its technical services. A
business-oriented service in an SOA is typically concerned with one major aspect of the
business, be it a business entity, a business function, or a business process. This chapter
provides an in-depth discussion of the different types of services.

In Section 5.1, we establish a classification that distinguishes between basic,
process-centric, intermediary, and public enterprise services, and we discuss the
characteristics of these different classes of services and what this means from a design,
implementation, and project management point of view. These service types have
significantly different characteristics with respect to reusability, maintainability, scalability,
and performance; therefore, it's crucial to understand them in order to implement them
efficiently.

Section 5.2 introduces SOA layers for design at the application landscape level. As we will
demonstrate, SOA layers are largely independent of the system architecture's tiers, which
is a major benefit of the SOA approach.

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.1. Service Types
An important feature of a software architecture is that it breaks down the overall structure
of a software system into smaller components. These components are intended to be
flexible building blocks.

5.1.1. MOTIVATION

Being able to classify service types is a precondition for the effective design of SOAs.

Common language. Being able to talk about the specific nature of different services at an
abstract level will enable the different stakeholders in an SOA projectbusiness analysts,
architects, designers, managers, and programmersto communicate their ideas and
concerns more effectively.

Vertical slicing. Classifying services according to their specific nature is a prerequisite to
breaking down a complex application landscape into manageable parts. In an SOA, this will
naturally lead to a "vertical slicing," which is an important part of SOA-centric project
management (see Chapter 13, "SOA Project Management").

Effective estimating. The classification of services is extremely helpful when it comes to
making proper estimates on their implementation and maintenance cost. These costs
depend on the complexity of the implementation, the level of design for reuse, and the
frequency of change. These factors will vary by service type.

Separation of code segments with different reuse characteristics. It is good practice
to separate code that is supposed to be reused from other code that is unique to a single
project. This separation improves the reusability of the "purified" code because it
eliminates any project-specific ballast that would complicate reuse. It also helps you avoid
fruitless efforts to make project-specific code fit for a reuse that will never happen. Being
able to classify your services according to our classification matrix will enable a cleaner
separation between reusable and once-off code.

Choosing the right implementation strategy. Different types of services require
different implementation strategies. Choosing an unnecessarily complex implementation
strategy for a simple service will naturally lead to inefficiencies. For example, services that
maintain conversational state can be very helpful in order to simplify clients. The client
implementation can be "thin," and the service can provide all the necessary business logic
to support even complex business processes. However, stateful services often have a
negative impact on the scalability of a distributed system. It is therefore advisable to
identify services that inevitably require conversational state and separate them from other
services.

Managing change. Finally, it is important to separate business logic that is exposed to a
high frequency of change from business logic that is more stable. Doing so can significantly
reduce the costs and risks of maintenance. Once again, our classification matrix will be
helpful in identifying services with different change characteristics. It should be noted that
this is good practice in any development situation, not just for SOAs. However, SOAs are
particularly well suited to enable this kind of code separation.

5.1.2. CLASSIFICATION

We differentiate between four classes of services: basic services, intermediary services,
process-centric services, and public enterprise services. Figure 5-1 introduces a basic
notion we will use throughout this book.

Figure 5-1. We distinguish basic, process-centric, intermediary, and
public enterprise services.

In the remainder of this book, we will also use the terms participant or SOA participant.
These terms comprise both application frontends and services. Table 5-1 provides an
overview of the different service types and their key characteristics.

Table 5-1. Service types

 Basic
Services

Intermediary
Services

Process-Ce
ntric
Services

Public
Enterprise
Services

Description Simple
data-centric
or
logic-centric
services

Technology
gateways,
adapters, façades,
and
functionality-addin
g services

Encapsulate
process logic

Service shared
with other
enterprises or
partner
organizations

Implementation
Complexity

Low to
moderate

Moderate to high High Service specific

State
Management

Stateless Stateless Stateful Service specific

Reusability High Low Low High

Frequency of
Change

Low Moderate to high High Low

Mandatory
Element of SOA

Yes No No No

We now examine the elements of Table 5-1.

5.1.3. BASIC SERVICES

Basic services are the foundation of the SOA. They are pure servers in the SOA and
maintain no conversational session state. Basic services cut into data-centric and
logic-centric services. However, in practice, there is often a smooth transition from a
data-centric service to a logic-centric service. As a matter of fact, many services deal with
both data and behavior. Thus, we cannot classify them as either purely data-centric or
logic-centric. Fortunately, the mix of data and business logic does not render the SOA
unsound. Services that provide both data and business logic can be as agile and reusable
as "pure" services. Let's consider, for example, a contract administration service. This
service typically stores data sets that represent contracts. In this respect, this service is
data-centric. But this service also needs to provide plausibility checks that decide whether
any data set represent valid contracts. In the second respect, this service is logic-centric.

5.1.3.1 Data-Centric Services

It is the purpose of a data-centric service to handle persistent data. This includes the
storage and retrieval of data, locking mechanisms, and transaction management. A
data-centric service also handles (and utilizes) a physical data storage facility such as a
relational database, file system, or tape library. In this respect, a data-centric service
behaves similarly to the data access layer of a traditional application. The major difference
is the vertical layering of data-centric services. Whereas a traditional data access layer
manages data for the entire application, a data-centric service deals with one major
business entity only. Furthermore, a data-centric service strictly encapsulates its data
entities. Any other service that requires access to this data needs to use the service
interface of the corresponding data-centric service (see Figure 5-2). Consequently, an
application requires several coordinated data-centric services.

Figure 5-2. The SOA strictly defines the ownership of data.

One of the most important tasks of the SOA architect is to identify the relevant business
entities that are represented by data-centric services. This task is similar to traditional
analysis of the business domain. Methods that are based on entity relationship models (ER)
or object oriented-design provide a sound base for the design of services. Notice that these
techniques are primarily used for designing the data objects that are either managed by
services or that serve as input and output data structures. It is important to understand
that cross-service relationships are not allowed, and as such, no cross-service navigation
exists as in distributed object technology. This means that the complex value objects
managed by the services must be sufficiently self-contained or must contain unique
identifiers that enable them to relate one complex value object to another.

Similar to the design of objects or abstract data types, a data-centric service can also
encapsulate data behavior. In this respect, SOAs provide many of the benefits of object
orientation. However, SOAs do not require object-oriented programming languages for
their implementation. The independence of programming languages and the underlying
technology is one of the greatest strengths of the SOA approach. In practice, you will often
find that programming languages such as COBOL, C, or PL/I and traditional transaction
processing monitors are used for the implementation of mission-critical services.

However, the usage of SOAs and data-centric services raises certain issues. Although the
vertical layering that is leveraged by SOAs is worthwhile, especially for big applications,
benefits such as flexibility and reusability are not without cost. Traditional applications
typically access one monolithic data store that has no vertical substructure even if the
application is horizontally layered. The functionality of the underlying database or
transaction monitor is fully leveraged. Physical transactions often span all parts of the data
model and, from the developers' perspective, this is very convenient. There is no need for
explicit considerations of data integrity. This is achieved in a transparent fashion by the
database or transaction monitor. The downside is a resulting monolithic structure with
many implicit and explicit dependencies. The issue of data ownership gains tremendous
importance with the vertical layering of applications. Although data ownership has been on
the agenda since the very first days of data modeling, it was not really relevant for the
implementation of traditional applications due to the monolithic structure of the data
access layer. So, this aspect of data modeling was mainly of academic concern and was
reflected in naming conventions for database tables and access modules. With the vertical
slicing of SOAs, the assignment of entities to data-centric services becomes a design
decision with a major impact on many characteristics of the resulting applications. In such
a case, explicit efforts are required to overcome these dependencies (see Chapter 8, "
Process Integrity").

5.1.3.2 Logic-Centric Services

Logic-centric services encapsulate algorithms for complex calculations or business rules. In
traditional applications, this type of functionality is often encapsulated in libraries and
business frameworks.

A very instructive example for a logic-centric service is an insurance product engine. This is
a service that encapsulates the knowledge, terms, and conditions of the products of an
insurance company. It is capable of computing fees, payments, or refunds and can validate
customer applications, suggest new offers, or simulate fee adjustments. This type of
functionality is generally part of the back office system for insurance contract/policy
management. Consequently, only a back office clerk can provide legally binding
information. This is very unfortunate for up-to-date business processes of sales and claims.

Traditionally, people have taken a number of approaches to resolve this problem. The first
deals with approximations. In this approach, the front office application provides an
approximation of the real value to be validated by the back office using a manual process.
Although the front office processes of insurance companies have had to cope with
approximations in recent decades, customers nowadays expect accurate data and rapid
processing. Particularly for the sales of new contracts, legally binding data that is instantly
available is increasingly mandatory.

The second approach is based on duplication of the relevant business logic. On one hand,
this approach satisfies the needs of the sales and claims departments, while on the other
hand, it can raise many technical issues in traditional environments. Most importantly, you
must cope with the deployment of the appropriate functionality and regular updates to
potentially thousands of PCs and laptops. You will also encounter heterogeneous
technology in front and back office implementations. While back office environments are
mostly based on centralized mainframes, the front office systems are usually based on PC
techno-logy. This means that every new version of the calculation rules also requires a
porting effort before deployment, a process that is both costly and risky.

In the third approach, the users of the front office applications are provided with access to
the back office applications. Although this might look like a solution of striking simplicity at
first glance, it is not an option for most insurance companies. Many insurance companies
have no desire to grant access rights to their back office applications to front office
personalparticularly if independent agencies are involved.

A logic-centric service providing the functionality of the product engine would overcome
many of the aforementioned challenges. The insurance company could operate this service
centrally (see Figure 5-3). Its functionality could also be integrated both with the internal
IT systems of the different departments and with business partners. Furthermore, façades
(discussed later in this chapter) can be utilized to provide different "views" for different
types of users (e.g., independent agencies versus claims department).

Figure 5-3. An insurance product engine encapsulates the knowledge
of the insurance company's products.

5.1.4. INTERMEDIARY SERVICES

Intermediary services can be classified as stateless services that bridge technical
inconsistencies or design gaps in an architecture. They are both clients and servers in an
SOA. They cut into technology gateways, adapters, façades, and functionality-adding
services and act as stateless mediators when bridging technological or conceptual gaps.
Although many intermediary services seem to be rather technical, we can distinguish them
from technical infrastructure services because they provide a business-oriented API,
whereas purely technical services provide a technical API. Many intermediary services are
highly project-specific.

5.1.4.1 Technology Gateways

Technology gateways bridge technological gaps (see Figure 5-4). They therefore
incorporate two or more technologies for communication or data encoding. Technology
gateways act as proxies for their business services and represent the functionality of the
underlying services in an environment that is technologically different from the original
business service's runtime environment.

Figure 5-4. A technology gateway bridges the gap between different
technologies.

They are particularly useful for legacy integration projects where one often encounters the
conflicting demands of a need to extend existing legacy application with a requirement not
to "contaminate" new components with legacy technology. There are good reasons for both
requirements, and a technology gateway can be very useful in such cases.

A typical scenario provides a good illustration of the problem. Assume that a
terminal-based legacy application contains valuable business logic. Due to its outdated
user interface, a reengineering project is planned for the near future. However, a more
urgent project requires the business logic of this application before the reengineering
project is completed. The new project is implemented based on a Service-Oriented
Architecture and up-to-date technology for distributed computing. In such a case, a
technology gateway can act as a mediator between the legacy application and the
components of the new project. The new project accesses the technology gateway using a
modern technology such as a Web service. The technology gateway translates the Web
service requests to terminal data streams in order to communicate with the legacy
application. Although it is a monolithic application that serves all requests, it is advisable
to distinguish between different services according to service-oriented design principles. It
is an irony of enterprise IT that you never know whether the reengineering project of the
legacy application will ever take place. However, even if this is the case, the design of the
existing services will be very useful. For these services, you only must replace the legacy
implementation with the reengineered basic services.

5.1.4.2 Adapters

An adapter is a special type of intermediary service that maps the signatures and message
formats of one service to the requirements of a client.

We can illustrate the concept with an airline booking example. Assume that airline A
merges with airline B and that both airlines already have an SOA in place. Apart from other
services, both airlines have an established customer service. More than likely, one of the
first business requirements after the merger will be to enable access to customer data
across the borders of the two former corporations. For the sake of customer service, this
feature should be put in place as soon as possible. It is also a very typical requirement that
the existing applications of both airlines should remain largely unaltered. A simple solution
to this problem is based on two adapters. One maps requests of application 1 to service 2,
and the other maps requests of application 2 to service 1.

5.1.4.3 Façades

The purpose of a façade is to provide a different view (probably aggregated) of one or more
existing services (see Figure 5-5). As such, façades often act also as technology gateways
and/or adapters.

Figure 5-5. A façade service provides a high-level view of one or more
basic services.

An in-depth discussion of façades is found in Gamma, et. al. [GHJV95]. Although Gamma
describes the encapsulation of object-oriented subsystems, the entire concept is widely
transferable to SOAs. Gamma defines a façade as ". . . a unified interface to a set of
interfaces . . . that makes the subsystem easier to use."

Façades can be used to provide a specific view of a set of underlying services. As such, a
façade can act as a simplifying access layer for a project. It can hide functions that are not
needed by the project, aggregate services, or add standard parameters. Furthermore, a
façade can hide technical complexity and heterogeneity. Façades can also be very useful in
a rather unexpected waythey can serve as a single point of coordination between a
project's development team and a maintenance team that is responsible for the SOA.

Contrary to the project-specific view, a common service access layer provides uniform
access to the complete functional infrastructure of the organization. Creating one is a very
tempting idea because such a layer could provide easy access to the entire functional
infrastructure for all projects. You could also add specific value to this layer, such as
support for distributed transactions and the capability to hide their complexity from
projects. It also would make the development and deployment of services easier because
there would be exactly one unified and mandatory process to make the services available.
In particular, some current J2EE-based enterprise architectures tend to employ this type of
access layer (see Figure 5-6).

Figure 5-6. From the project's point of view, a service access layer is
a convenient way to access the functional infrastructure of the

organization. However, at the enterprise level, these layers have some
severe disadvantages. Due to their monolithic nature, they tend to

spoil many of the benefits of an SOA.

In spite of these benefits, the idea of a common service access layer has certain
disadvantages. Many similarities exist between service access layers and traditional data
access layers. As we have already discussed, a data access layer spans the entire data
model of an application. It is very convenient for the development of this particular
application, but it results in a monolithic structure that makes reuse or standalone usage of
vertical subcomponents difficult. The technology of the data access layer is also a very
strong constraint for the development and for service access layers. Though a common
service access layer is very well suited to the development of single projects, it also has
many unwanted characteristics at the enterprise level.

Introducing a binding design rule that leverages a common service access layer will
probably lead to exceptions, which will outweigh many of the benefits of the access layer.
Eventually, these exceptions will establish an uncontrollable shadow architecture that
reflects the necessities of real-world heterogeneities. Because the shadow architecture is
"officially forbidden," the architecture team cannot openly discuss many important design
decisions. This ultimately leads to solutions that are driven by short-term political
feasibility rather than by long-term design goals.

A common service access layer impacts both backend and frontend integration. The
possible consequences are illustrated in the following example. Assume a large
organization has a traditional application landscape based on mainframes, transaction
monitors, and COBOL. New applications are required as part of a new J2EE-based strategy.
The COBOL application should be reengineered and reused as functional backend services.
In this scenario, one generally needs to design vertical slices of previously monolithic
mainframe subsystems to create services of reasonable granularity. In practice, the
integration of new services becomes a major challenge for the new SOA. As a result of the
"common service access layer" design strategy, all aggregations must be performed in the
J2EE container at a layer above the service access layer. Although this might look
reasonable at first glance, the integration with the Java layer is not acceptable in many
cases due to complicated technical designs, maintainability requirements, transaction
security issues, development costs, and performance issues. More often, a
mainframe-based intermediary service is much more efficient in all these respects. One will
also encounter difficulties at the frontend due to different technologies. The enterprise
benefits greatly when it can choose the best of breed products from a functional
perspective rather than from a technical perspective. For applications based on
nonJava-technology such as .NET, the Java layer provides no value. At the same time, it
introduces a new element of complexity. While all business logic is implemented in C# and
COBOL, the Java layer only passes the calls and parameters from the frontend to the
backendthe Java layer adds no value.

Keep Access Layers Project-Specific

The requirements of projects with regard to access to an underlying functional
infrastructure are generally very different. Introducing generic designs leads to a
significant overhead in implementation and unwanted dependencies at a
technological level. It is therefore highly advisable to design and use access
layers for the purpose of a single project only.

5.1.4.4 Functionality-Adding Services

In many cases, you want to add functionality to a service without changing the service
itself. In this case, you would establish a functionality-adding service that provides the
functionality of the original service and adds the required new characteristics.

There could be several reasons for such a design. If the original service is a third-party
product for which there is no source code available, a functionality-adding service can be
extremely helpful. The functionality-adding service can also serve as an evolutionary step.
If the original service is currently under construction by a different development team, one
can decouple both developments with the functionality-adding service. Consequently, a
second step is required to reintegrate both development efforts into one service in order to
achieve a clean design. The functionality-adding service could also be the first step for
reimplementing the original service. This is a particularly good strategy if the original
service is of poor quality, if you need the additional functionality as soon as possible, or if
you intend to improve the quality of the original service. In this case, you would create a
pure façade in the first step. In the second step, you would add the new functionality.
Finally, in the third step, you would reengineer all the functionality of the original service
and migrate it in small portions to the functionality-adding service until it implements the
entire functionality, and then the original service could be decommissioned.

5.1.5. PROCESS-CENTRIC SERVICES

Process-centric services can encapsulate the knowledge of the organization's business
processes. They control and maintain their state. From a technical viewpoint,
process-centric services are the most sophisticated class of services. They require careful
design and deliberate efforts to achieve an efficient implementation. Similar to
intermediary services, a process-centric service acts as a client and server simultaneously.
A major difference from intermediary services is the fact that process-centric services are
stateful because they must maintain the state of a process for their clients.

As with every additional element of an architecture, process-centric services introduce
some complexity. However, there are certain benefits:

Encapsulate process complexity. Process-centric services can facilitate application
frontends. They can completely hide the complexity of process control from the application.
The process-centric service enables different teams to work concurrently on the
implementation of presentation and processes. The service interface ultimately leads to a
clear encapsulation and facilitates testing and integration. The rich business APIs that
process-centric services typically provide facilitates the development of very lean
applications.

Enable load balancing. Process-centric services enable load balancing naturally. While
the application frontend focuses on the presentation, a service can execute the underlying
processes on another machine. This division of labor can be particularly helpful in Web
applications where user interface responsiveness is a high priority.

Leverage multi-channel applications. Multi-channel applications can require process
logic that is shared by multiple channels. Features such as channel switching or
co-browsing ultimately need an instance that controls the process and that is independent
of the channel.

Separate process logic. Process logic should be carefully separated from core business
logic and dialog control logic. Process-centric services provide appropriate measures to do
just that. When process-centric services are in place, you can assign core business logic to
basic services, and you can implement dialog control in the application frontend. The
separation of process logic is the precondition for efficient business process management
(see Chapter 7, "SOA and Business Process Management").

It is noteworthy that properly designing process-centric services and achieving the
aforementioned benefits is not an easy task. Many traditional designs suffer from an
inaccurate encapsulation of the process logic. You'll rarely find applications with a clear
distinction between business logic and process control, and you'll seldom find a clear
distinction between process control and dialog control. Individuals must have much
experience to design these layers properly. The same holds for process-centric services.
Chapter 7 gives an in-depth discussion on this issue and provides valuable design
guidelines.

Notice that process-centric services are mostly project-specific. In the airline booking
example, the required business logic and data is largely independent of concrete usage. A
travel agent requires far more processes than the customer, but both are concerned with
the same business entities. Therefore, and despite all obvious benefits, one must bear in
mind that process-centric services do not contribute to the functional infrastructure of the
SOA due to their marginal reusability.

Process-centric services are not mandatory for an SOA. Because it is highly advisable to
keep an architecture as simple as possible, you must carefully consider the trade offs when
considering implementing process-centric services. Figures 5-7 and 5-8 illustrate two
different approaches. In Figure 5-7, the application frontend makes use of a
process-centric service. As an alternative to process-centric service, the application
frontend can encapsulate the processes in its process control layer (see Figure 5-8).
Process-specific objects or subroutines represent the process definition and control the
entire workflow that is initiated by the application. Although this approach appears to be
very simple, it can be appropriate for many real world cases.

Figure 5-7. The application frontend can delegate the entire process
control to a process-centric service that executes the process on

behalf of the application frontend.

Figure 5-8. In many cases, the application frontend controls the entire
process. Process objects or subroutines in the process control layer

encapsulate the process definition and invoke the actors of the
process.

5.1.6. PUBLIC ENTERPRISE SERVICES

Whereas most of the service types described previously are only for use within the
boundaries of a particular enterprise, public enterprise services are services that an
enterprise offers to partners and customers. For example, a shipping company can offer
services that enable large customers to track their shipments as part of their own
just-in-time management systems. In another example, a telecom carrier might offer an
SMS (Short Messages Service) service, enabling customers to easily add SMS functionality
to their systems. Because the consumers of public enterprise services are usually not
known in advance and the relationship between consumer and provider is much looser,
these services have very specific requirements:

Interface at the business document level. Interfaces at the enterprise level have the
granularity of business documents. They have a standalone business meaning and include
the complete context that is necessary to be legally unambiguous. Therefore, enterprise
services are coarse-grained.

Decoupling. Enterprise services need to support decoupling of the business partners. This
generally implies asynchronous communication and payload semantics.

Security. Crossing enterprise borders raises security issues. Today, many typical SOAs
focus on intra-enterprise services, where it is much easier to define a pragmatic security
policy. Crossing the organization's borders implies the need for a much higher standard of
security mechanisms such as authentication, encryption, and access control.

Accounting/billing. While interdepartmental accounting assesses the capability of
different departments without the need for cash flow, the billing of cross-enterprise
services implies a real cash flow. It is therefore necessary to put more reliable mechanisms
in place.

SLA. The operations of a public enterprise service will probably be regulated by SLAs
(Service Level Agreements), which will lead to a different form of treatment for these
services. A normal precondition of effective SLA control is service metering.

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5.2. Layers on the Enterprise Level
In this chapter, we have already discussed different service types. Now we take a first look
at the overall structure of an application landscape and how the services relate to each
other.

Traditionally, software layers provide important levels of abstraction. You can assume that
layers are sequentially ordered, where layer N is above layer N+1. Code segments within
one layer N can use other code segments with the same layer in addition to code segments
of the layers N+1. In a distributed environment, the concept of tiers exists, where a tier is
a set of contiguous layers that can be deployed separately. Although layers and tiers are
extremely useful abstractions for the construction of single applications (or services),
neither is suited as an abstraction at the enterprise level. Service-Oriented Architectures
provide application frontends and services that are much more suited to this purpose.

SOA layers, which you must not confuse with these traditional software layers, and tiers
provide a conceptual structure at the enterprise level that organizes the application
frontends and services (see Figure 5-9). Each layer contains distinct types of services and
application frontends:

Enterprise layer. The top layer of SOAs contains application frontends and public
enterprise services, which are the end-points that provide access to the SOA. These
endpoints facilitate both the communication between end users and the SOA (application
frontends) and enable cross-enterprise (or cross-business unit) integration (public
enterprise services).

Process layer. The process layer contains process-centric servicesthe most advanced
service type.

Intermediary layer. The third layer contains intermediary services. These services act as
façades, technology gateways, and adapters. You can also use an intermediary service in
order to add functionality to an existing service.

Basic layer. The bottom layer contains the basic services of the SOA. Basic services
represent the foundation of the SOA by providing the business logic and data. The basic
layer also contains proxies for other companies' public enterprise services.

Figure 5-9. No 1:1 relationship exists between traditional tiers and
SOA layers. These concepts actually are largely independent.

As we will see in Chapter 6, "The Architectural Roadmap," many problems can be solved
with two or three SOA layers. In these cases, there is no benefit to artificially introducing
additional layers simply to have a "complete" SOA. Recall that an SOA is about
simplification. As long as a problem can be solved with simple measures, it is best to do
so.

Although we will not discuss this matter in great detail, we must briefly consider the
deployment of SOAs and the resulting system architecture in order to prevent a common
misunderstanding: SOA layers do not correspond to physical tiers. It is not necessary for
services, which originate from different SOA layers, to be deployed at different tiers. Nor
must all services of one SOA layer be deployed at the same location. The system
architecture is driven by matters such as available hardware and system software, system
management requirements, and compatibility. These issues are largely independent of
requirements such as maintainability or simplicity that drive the design of the services.

Actually, the design of the SOA and the system architecture are largely independent
aspects of the application landscape, which is the remarkable strength of the SOA
paradigm.

Decouple System and Software Architecture

A major benefit of the SOA paradigm is to be able to design the system and the
software architecture largely independently of each other. This results in a high
level of flexibility regarding the deployment of the SOA. Do not introduce
unnecessary technical dependencies and rules for short-term benefits!

SOAs enable a largely independent design of the system and the software
architecture. This results in a high level of flexibility regarding the deployment of
the SOA. Do not spoil these benefits by introducing technical "short-cuts" and
design rules for short-term benefits!

Figure 5-10 shows an example of how a system architecture and SOA layers can relate. It
depicts three tiers at the system architecture levelthe Web server, application server, and
host. You can see that the SOA layers do not map directly to these tiers.

Figure 5-10. The deployment of an SOA is largely independent of the
SOA layers.

[View full size image]

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

5.3. Conclusion
In this chapter, we have introduced four classes of services: basic, process-centric,
intermediary, and public enterprise services. These different services are predominantly
used by the application frontends, which are the active elements of the SOA but are not
services themselves. It is important for a designer of a Service-Oriented Architecture to be
aware of the distinctive characteristics of the different service types because they all have
different requirements with respect to design, implementation, operation, and
maintenance.

In addition, this service classification is ideally suited to provide an overall structure within
the SOA that is expressed by the different SOA layers, including enterprise layer, process
layer, intermediary layer, and basic layer.

References

[GHJV95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides . Design
Patterns. Addison-Wesley, 1995.

[Her2000] Herzum, Peter and Oliver Sims . Business Component Factory: A
Comprehensive Overview of Component-Based Development for the Enterprise. OMG Press,
2000.

[Rei1992] Reisig, Wolfgang . A Primer in Petri Net Design. New York: Springer Compass
International 1992.

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 6. The Architectural Roadmap
Implementing an SOA at the enterprise level is a significant endeavor that is likely to take
many years. During this time, we probably will encounter many obstacles and will have to
cope with frequently changing requirements. It is therefore essential that we look at a
realistic roadmap for rolling out our Service-Oriented Architecture. It is important that our
architecture and our roadmap is designed to cope with the complexity and dynamics of an
enterprise environment. Chapter 1 introduced an SOA-based enterprise IT renovation
roadmap. In this chapter, we will focus on the architectural aspects of this roadmap. In
Chapter 12 of this book, we will then focus on the political and organizational aspects.

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.1. The Architectural Roadmap
For the architectural roadmap, we have identified three expansion stages that signify
different levels of maturity of an SOA. The expansion stages indicate the allocation of
responsibility between the application frontends and the services (see Figure 6-1). The first
stage is called fundamental SOA. In this expansion stage, much of the complexity and
responsibility is still allocated at the application frontend. Although a fundamental SOA
does not provide all features of a fully leveraged SOA, it is already a useful platform for an
enterprise application landscape. The next expansion stage is called networked SOA. At
this stage, intermediary services aggregate low-level basic services to more sophisticated
services. Finally, we have process-enabled SOAs. At this stage, the application frontends
delegate process control to the SOA.

Figure 6-1. The expansion stages fundamental SOA, networked SOA,
and process-enabled SOA are milestones of the architectural roadmap

to the service-enabled enterprise.

In Figure 6-2, we depict the typical development of an application. It shows how
permanent change requests and a lack of continuously applied architectural concept
diminish maintainability and how an SOA-driven refactoring can reestablish agility. In Part
III of this book, we present several case studies that show how different enterprises
experienced difficulties when extending their historically grown application landscapes and
how a transition to a Service-Oriented Architecture helped to incrementally overcome their
difficulties.

Figure 6-2. Agony versus agility.
[View full size image]

It should be noted that the concept of expansion stages cannot be applied in a
black-and-white fashion. As soon as the SOA is established, you will probably find areas of
differing maturity that are at a different expansion stage within itfortunately, without any
undesired impact on the SOA itself. This reveals a major benefit of Service-Oriented
Architecturesthey enable enterprises to start small and evolve in small steps as required in
future projects. Actually, the SOA enables both evolutionary development of technology
and functionality. Furthermore, the SOA supports different developments that run in
parallel or in sequence. The SOA brings all these developments together in a smooth
fashion, without harming a single project or the overall SOA endeavor. However, the
expansion stages differ in regard of the distribution of responsibilities between application
frontends and services. With an increasing maturation of the SOA, the services gain more
and more responsibilities.

Allow Different Expansion Stages

Typically, different expansion stages coexist in the same SOA. Do not fight this
heterogeneity! Develop different areas of the SOA in parallel to the requirements
of business-driven projects.

The definition of your SOA strategy and the required level of maturity strongly depend on
the scope of the business integration you are planning to reach. Obviously, implementing
an SOA strategy is always a question of budget, and the further you are planning to
advance your SOA, the longer you will have to invest (see also Chapter 12, "The
Organizational SOA Roadmap," for a discussion on the budget requirements of an SOA).

Identifying the required scope of the business integration is usually a good first step on the
way toward the definition of the overall SOA strategy because there is a strong correlation
between the integration level one is aiming for on the one hand and the required maturity
level of the SOA on the other. Figure 6-3 depicts this dependency.

Figure 6-3. The maturation of the SOA with respect to the expansion
stages often correlates to an enlargement of the scope of business

integration.

For example, if the required scope of business integration is only the intra-departmental
level, a fundamental SOA will already help achieving good levels of maintainability of the
system at hand. Obviously, the limited integration scope effectively limits the amount of
flexibility or agility that can be achieved because only a limited view to the overall business
processes is studied. In addition, investing in a very advanced SOA (such as a
process-enabled SOA) is likely to be costly because the required IT investments would not
be justified by the resulting business benefits.

On the contrary, in a scenario where the scope of business integration to be achieved is
broadly defined, an approach based on a networked or process-enabled SOA is much more
efficient. However, an extremely complex scenario, including cross-enterprise-integration
and complex processes, might not even be feasible on the basis of a fundamental SOA.

When deciding on your SOA strategy, you should always ask yourself how much agility do
you really need? Also consider the learning curve in your organization. Are you fit for
process-enabled services? Choose an SOA strategy that best matches your agility
requirements, your integration scenario, your architectural and development skills, and
(obviously) your budget constraints. Your SOA strategy should be based on an evolutionary
approach, subsequently developing your SOA expansion stages, taking all of the above
mentioned factors into consideration. This approach also allows you to gradually broaden
your integration horizon, moving from intradepartmental integration toward
cross-departmental or even cross-enterprise integration.

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.2. Fundamental SOA
A fundamental SOA consists of two layers: the basic layer and the enterprise layer.
Distinguishing these two layers helps single applications to define a proper high-level
structure. It also enables two or more applications to share business-logic and live data.
Although a fundamental SOA represents a rather simple approach, it provides a strong
platform for large enterprise application landscapes. In fact, it is a major improvement
compared to many of today's real-world scenarios. It is also an excellent starting point for
the introduction of an enterprise-wide SOA because it enables enterprise organizations to
start small on the technical side and focus on other critical success factors (see Chapter 12,
"The Organizational SOA Roadmap").

A simple example (see Figure 6-4) shows how one application can be divided into
meaningful components using an SOA. The Airline Web site utilizes four services that
encapsulate the major business entities and their behaviors that are relevant to the
business processes that are exposed to the customers.

Figure 6-4. A fundamental SOA consists of two layers. Application
frontends and basic services provide a fully functional base for

enterprise applications.
[View full size image]

We can now expand the original example by adding another application. A key
characteristic of a fundamental SOA is that it enables two or more applications to share live
data and business logic. In our example, we consider a traditional billing application that is
required to keep track of terms of payment and the handling of demand notes (see Figure
6-5). This type of application is traditionally provided with customer and billing data
through nightly batch jobs. Integrating billing and invoicing into a fundamental SOA
enables the booking and the billing applications to share live data. In practice, [1] this means
that the billing application gets access to the customer service and billing services that, in
turn, make batch processes that transfer data between the applications obsolete. [2] In
addition, there are clear benefits for the booking system. As a result of up-to-date billing,
the booking system also has access to precise, up-to-date data at any time. This increases
the capability of the booking system to treat customer requests in a more appropriate
manner. For example, a change in the credibility status of a customer, which is detected by
the billing system, is instantly available for the booking system. As previously mentioned,
in many traditional environments, this information is only available to the databases of the
booking application after nightly batch updates.

[1] It should be noted that a real-world scenario would be much more complex, as depicted in Figure 6-5. It would involve a customer care
application, a sort of workbasket, and additional business services. However, the aforementioned benefits still apply.

[2] Note that an update in one application is instantly visible in the other application. In a traditional EAI scenario, you should consider
decoupling the original data change from notifying the second application due to throughput and performance considerations. In the SOA
world, these notifications are obsolete.

Figure 6-5. Enterprise application integration becomes obsolete if
several applications share live data.

[View full size image]

The introduction of a fundamental SOA is the first important step toward a truly
SOA-enabled enterprise. The following summarizes the main characteristics and scope of a
fundamental SOA:

• A fundamental SOA is an appropriate base for an enterprise application landscape.

• Due to its simplicity, it is technically easy to implement.

• It is a good starting point for an SOA that enables the introduction of more
advanced expansion stages in the future.

• The application frontends are still complex. They must cope with the control of
business processes and the full integration of the backend.

• A fundamental SOA increases the maintainability of an enterprise application
landscape.

• Shared services can make data replication (enterprise application integration)
largely obsolete.

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.3. Networked SOA
The next expansion stage is called networked SOA, and it deals with backend complexity in
addition to technical and conceptual integration. It includes a layer of intermediary services
that can include façades, technology gateways, adapters, and functionality adding services.

We start our discussion with façades. As we discussed in Chapter 5, "Services as Building
Blocks," façades can serve various needs. Most importantly, they encapsulate some of the
complexity of underlying basic services by providing an aggregated API that enables
clients to more easily utilize the functionality of the basic layer. In Chapter 8, "Process
Integrity," we will discuss one aspect of this complexitythe challenges of achieving process
consistency. Introducing a façade is one possible solution to this issue. Figure 6-6 provides
an example of the booking and the billing services that must update their databases in a
coordinated manner. Depending on the detailed requirements and the concrete technology
upon which the booking and the billing services are built, it is not always simple to
guarantee consistency. Actually, you will want to shield client developers from this kind of
complexity. It is often necessary to apply particular skills in server-side development to
master the challenges of the design and implementation tasks. Moreover, if multiple clients
require similar functionality, there should be no duplication of workload. Thus, in our
example, this complexity is encapsulated by the intermediary service "BookAndBill."

Figure 6-6. The intermediary service BookAndBill encapsulates the
handling of distributed transactions that span the services Booking

and Billing.
[View full size image]

Utilizing technology gateways is a handy technique to enable one service to be used in
different technical environments. [3] In Figure 6-7, we describe a scenario in which the flight
service that is implemented on CICS is exposed to EJB, .NET, and MQSeries environments
by technology gateways. This enables developers to specify, design, develop, test, operate,
and maintain exactly one instance of the flight service, including live data, and reuse it in
many heterogeneous environments at the same time.

[3] Note that from a purely technical point of view, there is no difference between a technology gateway and an additional interface to the
underlying basic service. Thus, it is possible to add some Java classes to an existing PL/I based service in order to provide an additional
interfacing technology. The communication between the Java code and the PL/I code would become an internal matter of the service. The
main difference between these two approaches is at the project management and team organization level. Most often, it is advisable to
separate these technically different artifacts. In practice, you will find different subteams working on the different areas anyway.
Separating their work by means of a service contract, configuration management, and distinct entries in the service repository is generally
preferable. The same discussion applies to the adapters discussed in the following paragraphs.

Figure 6-7. Technology gateways expose the functionality of services
in technologically different environments.

[View full size image]

The perfect world does not need technology gateways. In the first place, you would not
encounter heterogeneous technologies. Secondly, given that the clients are heterogeneous
in the real world, you would choose a single uniform bridging technology to integrate all
clients. In our example, you might want to implement a type of XML RPC interface directly
as part of the CICS-based service and use this interface in all client environments.
Unfortunately, the ongoing evolution of technology can raise many unforeseen issues and
new requirements. You might want to adopt current improvements without reimplementing
existing services. Furthermore, you cannot predict which technologies you will need to
integrate in the future. It is also unclear which political or commercial constraints will have
an impact on a technology decision at a specific point in time. As a matter of fact, the SOA
paradigm enables the creation of clear designs that cope with this kind of heterogeneity.
Although it is not desirable to have multiple technology gateways that provide access to
the same service, these technology gateways do no real harm to the architecture.

Figure 6-8 depicts a typical chronology. It shows the major milestones of a check-in
application after its launch in 1986. The first milestone was the integration with partner
airlines. Besides other requirements, the partner airlines needed access to flight data. This
integration was accomplished by extending the dialog control layer that previously
supported only the 3270 presentation. After integration with the partner airline, the dialog
control layer also had to communicate with message queues that integrate the partner
airlines. The integration code between the dialog control and the message queues
simulated terminal sessions. This resulted in the fact that every change in the control flow
of the applicationsuch as new masksrequired a change in the integration code. Although
this dependency reduced agility, it was still acceptable. The next milestone was the launch
of an online portal. This was implemented in Java and also required access to flight data.
The integration with the existing message queues seemed to be the easiest and cheapest
solution. However, this decision was rather short-sighted because any change in one
system had a potential impact on other systems, and maintenance became a nightmare. It
was at this point that a new requirement was specified. A graphical user interface was
needed to replace the 3270 representation. Because this GUI required a completely new
dialog control, the new project turned out to be infeasible. Driven by the requirement to
implement a modern user interface, an SOA was put in place. Based on the SOA and
technology gateways, the GUI became feasible and the maintainence costs could be
significantly reduced. Finally, it provided the base for future developments such as mobile
integration.

Figure 6-8. The typical lifecycle of an enterprise application traverses
different development stages.

[View full size image]

Adapters are useful in integration scenarios. They bridge conceptual gaps between a
service and its clients. In the simplest case, an adapter maps signatures and transforms
parameters. You must not underestimate the importance of such adoptions. As a matter of
fact, much of the complexity of enterprise architectures results from small differences in
how similar entities are handled in different parts of the architecture. Although many of
these differences do not result from logical considerations, they are constraints that you
must accept in real-world projects. For example, the booking application can regard any
person that has registered at the Web site as a customer, whereas CRM might require that
a person have purchased at least one ticket in the last three years in order to be
considered a customer.

Figure 6-9 depicts three different scenarios in which you can operate a booking and CRM
application in parallel. The first scenario represents the traditional architecture. Two
distinct applications are integrated through nightly batch runs. As a result, two separate
databases contain redundant data that is synchronized overnight. The second scenario is
service-enabled. Although this might already have several benefits, two separate
databases are still involved, along with the associated issues. The final scenario abolishes
one redundant database. The CRM application utilizes the Customer service of the Booking
application using an adapter. This is the scenario of choice because it provides the simplest
structure, abolishes batches, enables live data sharing, reduces maintenance costs, and
guarantees data consistency.

Figure 6-9. Adapters bridge conceptual gaps between services and
their clients, and they map signatures and adopt semantics. Adapters
are a very powerful tool for enabling application integration according

to the SOA paradigm.
[View full size image]

There are various situations in which functionality-adding services can be very useful. Let's
consider three different examples (see Figure 6-10). In the first example, a new client uses
an existing legacy application. It is a common requirement that the legacy application
remain untouched while the functionality is expanded. In our example, an additional
service maintains add-itional attributes for data entities stored by the legacy application.
Similar to database views, the data of both sources is transparently joined by a
functionality-adding service in the intermediary layer. From the client's perspective, a
single service delivers all the data. The second example involves a packaged application.
Because you typically have no source code available, any changes or enhancements to
existing functionality must be done by the vendor of this package or by an intermediary
service. The third example uses a traditional client/server application. This application has
a client that requires a specific communication protocol to be functional, which suspends
the possibility of simply changing the existing server application. If a new client requires
additional functionality, you either must modify the existing client or add this functionality
with an appropriate service in the intermediary layer.

Figure 6-10. Three different examples for the usage of
functionality-adding services in the intermediary layer.

[View full size image]

The introduction of a networked SOA represents the second step toward the evolution of an
SOA-enabled enterprise. The following summarizes the main characteristics and scope of a
networked SOA:

• Application frontends can be more lightweight when compared to a fundamental
SOA. However, they remain complex because they must cope with the business
processes.

• Intermediary services bridge technical and conceptual gaps.

• The application frontends are shielded from the complexity of backend systems.

• A networked SOA enables the enterprise to flexibly integrate its software assets
independently of underlying technology.

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6.4. Process-Enabled SOA
The third expansion stage is the fully leveraged SOA. The key feature of the
process-enabled SOA is the maintenance of process state in process-centric services.

Similar to intermediary services, a process-centric service is both client and server in an
SOA. The major difference between these service types is the fact that process-centric
services are stateful. This is a crucial difference because handling state is a critical issue for
server-side software. There are several possible reasons for introducing a process-centric
service:

• Encapsulating the complexity of processes

• Sharing state between multiple clients

• Handling long-living processes

Encapsulating process state in a process-centric service enables application frontends to be
simple and lightweight and at the same time very user-friendly with an elaborate handling
of the user session.

Figure 6-11 extends the booking example first introduced in Figure 6-5. A new service
"Booking process" encapsulates the business process "Booking." The Booking process
utilizes the BookAndBill service and the Customer service. Although most of the work is
carried out by the Booking service, the application frontend has access to all layers of the
SOA.

Figure 6-11. A fully developed process-enabled SOA has four layers.
[View full size image]

The scenario in Figure 6-11 is the straightforward evolutionary step arising from the
scenario in Figure 6-5. However, a green-field design would be different. In our example,
the BookAndBill façade could become part of the process-centric service. Omitting the
BookAndBill service (see Figure 6-12) reduces our scenario to three layers. Because one of
the primary goals of SOAs is simplicity, this is a desirable step. Furthermore, reducing the
number of tiers between the application frontend and basic layer reduces the system's
latency and the number of elements that can potentially fail.

Figure 6-12. The Booking process encapsulates all functionality
necessary to book flights. It also maintains the session state.

[View full size image]

But there are also possible scenarios where our BookAndBill service can be beneficial.
Assume that several clients, such as a Web site, a B2B gateway, and a mobile application,
are running simultaneously (see Figure 6-13). Typically, these applications require a
distinct process-centric service. Factoring out the BookAndBill functionality becomes a
reasonable design decision in this case.

Figure 6-13. Several processes can utilize the BookAndBill service at
the same time.

[View full size image]

However, as depicted in Figure 6-14, an alternative design exists that factors out common
booking process functionality to a process-centric service that can incorporate the
BookAndBill functionality. The shared process-centric service both maintains a
channel-independent process state and shields the channel-specific process-centric
services from backend complexity.

Figure 6-14. In general, every channel of a multichannel architecture
requires channel-specific process logic. Nevertheless, different

channels also share behavior.
[View full size image]

Finally, process-centric services can handle long-living processesin particular if user
interaction or asynchronous backend services are involved. Obviously, one requires a
location that maintains the state of a process for the duration of its execution.

Assume that the booking process supports waiting lists. This means that a customer can
register a seat in a fully booked flight. If cancellations occur, the customer is notified using
email or SMS (mobile phone text messages), or he can retrieve the status of his
registration in a later session at the Web site. This kind of functionality implies that the
booking process is long-living. External events (here, cancellations of other customers)
change the state of the process.

A possible implementation scenario would assume that the cancellation process is another
client of the booking process, as depicted in Figure 6-15. If a cancellation is made for a
flight for which the waiting list is not empty, the cancellation process starts the appropriate
booking process. The booking process notifies the waiting customer and converts the entry
in the waiting list into a proper booking.

Figure 6-15. The booking process is asynchronously coupled with the
waiting list service.

A process-enabled SOA represents the endpoint of the evolution we have described in this
chapter. A process-enabled SOA

• Enables lightweight application frontends that "only" need to worry about user
interaction

• Encapsulates complexity of business processes and handles their state

• Encapsulates complexity of backend systems in intermediary services and
process-centric services

• Enables the process logic located in the process layer to be clearly separated from
other types of code including dialog control that is located in the application
frontends and the basic services' core business logic

• Represents the most sophisticated expansion stage and is therefore more difficult to
implement than other expansion stages

• Is required for integration of highly independent organizations and the
implementation of complex processes. However, it is not as cost effective in
well-controlled environments such as intra-departmental integration scenarios.

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

6.5. Conclusion
In the previous chapter, we introduced four SOA layers that serve as a conceptual
construct that enables the efficient organization of enterprise application landscapes.

Based on the concept of SOA layers, we distinguished three expansion stages that define
the level of sophistication an SOA has achieved. The first expansion stagefundamental
SOAdelivers a maintainable business infrastructure that provides the application landscape
with flexible building blocks containing the business logic and data of the enterprise. While
the integration of these building blocks is still allocated at the application frontend in the
first expansion stage, the second stagenetworked SOAencapsulates this kind of complexity
in an intermediary layer. Finally, the process-enabled SOA depicts the truly SOA-enabled
enterprise, leveraging support for the business processes of the enterprise in
process-centric services.

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 7. SOA and Business Process
Management
In previous chapters, we discussed the general "renovation roadmap" that describes the
evolution of an enterprise IT infrastructure toward a more agile Service-Oriented
Architecture. We examined fundamental and networked SOAs as the initial stages in great
detail. According to our roadmap, the final stage in this evolution are process-enabled
SOAs. Although process-centric services can be realized in many different ways (and can
thus take many different shapes and forms), business process management (BPM)
represents possibly the most consequent approach to process-enabling an SOA.
Consequently, we provide a general introduction to BPM in this chapter, followed by a
discussion on how BPM fits into the SOA landscape. In this chapter, we focus more on the
technical (computational and architectural) aspects, while Chapters 12, "The Organizational
SOA Roadmap," and Chapter 13, "SOA-Driven Project Management," concentrate on the IT
strategy and project-management aspects.

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.1. Introduction to BPM
Business process management has a number of predecessors. Following the Total Quality
Management wave of the late 1980s, a new paradigm emerged in the early 1990s:
Business Process Reengineering (BPR). In 1993, Michael Hammer and James Champy
published their New York Times bestseller Reengineering the Corporation [HC93], which
was followed by a plethora of other management books on the topic of process-orientation
and reengineering. The promise of reengineering was to deliver dramatic business
performance improvements in a relatively short period of time by completely reinventing
existing business processes, that is, starting from scratch with new, optimized ways of
doing business, throwing out the old, encrusted, inefficient procedures of the past.

However, after the initial BPR boom (and millions of dollars spent on management
consultancies to lead BPR projects in Fortune 500 companies), the process movement
became idle. Many projects resulted in complete failure, with experts claiming that
between 60% and 70% of reengineering efforts failing to achieve expected results.
Hammer and others attribute these failure rates to resistance to change, lack of
understanding of the business models and underlying processes, and failure of nerve on
the part of the client companies.

Almost ten years after BPR, you can observe a revival of the process movement under the
umbrella term business process management (BPM), as advocated by Howard Smith and
Peter Fingar in BPM: The Third Wave [SF03]. When comparing BPR and BPM, it appears as
if one thing has fundamentally changed: While in the 1990s reengineering meant "starting
from scratch," process management builds on and transforms that which already existsit
recommends incremental change and evolutionary optimization. However, BPM is still
about processes, which are the main competitive differentiator in all business activity.

BPM is a general management topic that focuses on the strategic and operational aspects
of process orientation in a given business area. Mapping a BPM model onto an enterprise IT
landscape is a challenging task, which has some interesting technical as well as IT
management-related aspects.

7.1.1. BPM VERSUS BPMS

When discussing BPM, it is important to differentiate between the business and IT sides.
When looking at the business side of BPM, you will often find related keywords such as ISO
9000 and Six Sigma. The IT side of BPM is often accompanied by keywords such as process
modeling and workflow management (see Figure 7-1).

Figure 7-1. IT and business people have different views of the
processes of an organization.

[View full size image]

A BPMS (Business Process Management System) provides the technical platform for
realizing BPM management initiatives. It comprises several parts including a BPM engine,
facilities for business process monitoring, design tools and facilities for simulation. A BPMS
installation can include several products or custom made software components. Closing the
gap between the business and IT sides of BPM (or other process-oriented approaches) has
been something of a holy grail in IT for two decades. Currently, it seems that the solution
might be a conversion between more software engineering approaches such as CASE
(Computer Aided Software Design) and MDA (Model Driven Architectures) on one hand,
and workflow management and BPM approaches on the other (see [Fra03]).

BPM introduces the concept of "process processing" and stresses that this concept is not
limited to the automatic execution of digital process models, but "encompasses the
discovery, design, and deployment of business processes, as well as the executive,
administrative, and supervisory control over them to ensure that they remain compliant
with business objectives" [SF03]. This describes at a high level the features that are
typically included in BPMS, a new software category that supports the entire lifecycle of
modeling, executing, and monitoring business processes.

7.1.2. WHEN TO CHOOSE A BPMS

The cost and complexity of introducing a BPM engine or platform should not be
underestimated. Most BPM products are fairly complex and require a mixture of highly
skilled developers and administrators for installation, implementation, and maintenance.
Thus, the decision for a BPM solution is a critical one. When does it actually make sense to
consider a technical BPM solution, and what are the decision criteria?

IT and business must work hand-in-hand. You must understand that the introduction
of a BPM software solution will not enable the process-oriented enterprise on its own. If the
enterprise is not prepared for a process-oriented operation at the business level, a BPM
platform will always be limited to covering very small sections of the enterprise. On the
other hand, if an enterprise has gone through the process of defining and documenting key
business processes, for example as part of an ISO 9000 certification or a Six Sigma quality
management project, it is likely that the introduction of a BPM engine will be widely
accepted at both the technological and business levels. See Chapter 12 for a more detailed
discussion.

Utilize process templates. It is interesting that some BPM vendors are starting to bundle
their BPM platforms with process templates for several different vertical industries, such as
banking, insurance, and manufacturing. Although a process definition, such as claims
processing in insurance, is likely to be different for every single company, the provision of a
template for specific processes as a starting point can be extremely valuable. This can be
particularly interesting if you consider that the BPM concepts are not about starting from
scratch (like in business process reengineering) but rather are about incremental changes:
starting a project for defining and implementing process definitions from scratch imposes
significantly higher risks than a project that can start from a working process template,
even if this template must be adapted to fit the individual needs of the enterprise.

Match the right technology to your problem. To determine whether it makes sense to
choose a BPM engine to support a particular business process, you should understand the
nature of the business process itselfdifferent types of processes are best addressed using
different types of technologies. Two key characteristics of a business process are its
complexity and dynamism (frequency of change) on one hand, and the degree of
coordination the particular process requires on the other (see Figure 7-2).

Figure 7-2. Different types of processes are best addressed using
different types of technologies, such as EAI, application servers, or

BPM/Workflow.

Adopt the development model. A BPM platform can also provide significant benefits at
the level of software development processes: It provides a complete development model
that enforces a clean separation between business logic and low-level technical code. This
can be a major benefit, especially if a team has highly heterogeneous skills. BPMs are also
particularly useful in situations where people have made many ad-hoc changes to the
business model and a transparent runtime management of process instances is required.

However, given the high resource requirements of a BPM introduction, you must carefully
evaluate the real need for BPM. Generally, you should avoid using BPM if the workflows or
business processes are of a simple to moderate complexity because a team with knowledge
of an existing development platform would be significantly faster in developing developing
these workflows or business processes using an ordinary programming language.

7.1.3. OVERVIEW OF A BPM SYSTEM

A BPM software product should enable business analysts, software developers, and system
administrators to model and deploy business processes (at development time) and to
interact with, monitor, and analyze process instances (at run-time). The following looks at
actual modeling and execution of business processes in a BPMS.

7.1.3.1 Modeling Languages

A number of competing modeling languages have been proposed by a variety of different
industry consortia, although the final shoot-out has yet to happen. However, almost all
these process modeling languages are based on or at least influenced by the theoretical
concepts of Petri [Rei 1992] and or the more recent work of Milner [Mil80].

Two of the most popular approaches are Business Process Execution Language for Web
Services (BPEL4WS) and Business Process Modeling Language (BPML). BPEL4WS is based
on IBM's Web Service Flow Language (WSFL) and Microsoft's XLANG. BPML is developed by
the Business Process Management Initiative (see BPMI.org), which is supported by vendors
such as Intalio, SAP, SeeBeyond, Sun, and others.

While process definition languages such as BPEL4WS and BPML are designed to enable the
exchange of process definitions between process engines from different vendors, graphical
modeling languages exist that enable human users to understand, create, and modify
process definitions more easily. The BPMN (Business Process Modeling Notation) is a
language that has been defined by the BPMI in order to support a standardized, graphical
representation of business process diagrams. In a way, the BPMN approach is similar to the
UML approach, in that it provides a graphical representation of object models that is
independent of the implementation language. In fact, many similarities exist between UML
activity diagrams and BPMN. However, BPMN is specifically designed with BPM engines in
mind. Consequently, it includes a mapping of its graphical objects to BPML. We use BPMN
at various points in this book to graphically illustrate business processes.

Figure 7-3 shows how BPMN is positioned at the interface between business and IT: While
UML is widely used within the IT organization as a means to communicate abstract
concepts and models, BPMN aims to become the de facto standard used between IT and
business to discuss the scope and functionality of processes and applications.

Figure 7-3. BPMN is positioned at the interface between business and
IT.

Another feature of many modern BPM systems is the capability to provide different views of
a process definition, including a more abstract view designed for business analysts and a
much more detailed view for technical staff.

7.1.3.2 Architecture of a BPM System

Depending on the BPM product at hand, processes are usually modeled graphically (e.g.,
based on a graphical notation such as BPMN), stored in a block-structured model (e.g., in
BPEL4WS or BPML), and executed by a process engine. What is common to most pure-play
BPM engines is their foundation on a mixture of Pi-Calculus [Mil80] and Petri Net models [
Rei1992]. BPM tools vary in their support for different modeling languages, application
integration, process monitoring, and so forth. However, we provide an overview of a
generic BPM system architecture in Figure 7-4. At the heart of a BPM is the process engine,
which creates and interprets runtime instances of formal process definitions. Process
definitions (development time) and process instances (runtime) are stored in repositories,
and the system provides appropriate interfaces to design, deploy, and configure process
definitions and to monitor and manage process instances.

Figure 7-4. Overview of a generic BPM system architecture.

7.1.4. VISION AND CAVEAT

The BPM vision is a strong oneinstead of hard-coding information and rules regarding
important business processes directly into the application code, we take this information
out of the application systems and put it under the control of a BPM system. The BPM
facilitates the modification, reconfiguration, and optimization of process definitions with
graphical tools that can be used by less technology-oriented business analysts.

As depicted in Figure 7-5, this BPM vision and our SOA vision are a very good fit. The SOA
provides the backend functionality that is required by a BPMS in order to implement its
process functionality. All the concepts discussed with respect to SOAincluding the
evolutionary development of basic, intermediary, and process layersmake sense in light of
this picture. SOA becomes the enabling infrastructure for the process-oriented enterprise.

Figure 7-5. Roundtrip engineering at the business level: The SOA
provides the enabling business infrastructure.

However, there is one caveat to all this: Remember the hub-and-spoke model as it was
proposed by late-nineteen-ninetieth EAI-products? In the hub-and-spoke model, a
centralized hub connects a variety of different applications, enabling the seamless interplay
of different transactions in these sub-systems. A picture similar to the central hub is the
famous "software bus" promoted by the CORBA community. This never worked out in your
enterprise? There was never one centralized software bus or hub, but rather a multitude of
competing integration and EAI products and projects? Does this BPM vision not resemble
the central hub/bus vision and cause a major concern? Would this BPM vision not require
the centralization of all business process definitions, as depicted in Figure 7-6?

Figure 7-6. The topologies of BPM and hub-and-spoke systems look
similar.

In a way, you are right if you experience déjà vu. The chances that your enterprise will
standardize on just one BPM platform and migrate all its core business processes onto this
centralized platform are indeed fairly slim. However, we believe that there is still light on
the horizon and that BPM could play an important part in your enterprise's transition
toward a more agile and flexible IT infrastructure with an underlying SOA. In Figure 7-7,
we show a more realistic scenario: Individual departments or organizations will adopt SOA
and BPM. The integration across these organizational boundaries will not be based on
centralized hub, bus, or BPM architectures for a variety of reasons. The cloud in the figure
represents the void between the different organizations, a void that will not be filled by a
centralized technology standard controlled by a single political unit. Instead, the
connections between the different organizations will continue to be ad-hoc and often
short-lived. A number of common (sometimes conflicting) standards, such as SOAP and
CORBA IIOP, enable basic communication between the different organizations. In some
cases, higher-level protocols such as ebXML or RosettaNet might play a role. However,
organizations will have to cope with the fact that the integration with external
organizations (or other business units, subsidiaries, etc.) will still need protocols and logic
that require more flexibility than within a well controlled, intra-organizational environment.
If the organization hooks into this "cloud" using a BPM, the organization receives a very
powerful tool for reacting to frequently changing requirements for integration with third
parties.

Figure 7-7. The scope of a BPMS is generally limited to a single
business unit. Crossing the borders of the organization requires

distributed process control and largely heterogeneous standards.

Although this vision does not promise to unravel the enterprise system integration
"spaghetti," it provides a chance for individual organizations to react to the realities of
intra- and extra-company system integration in the most flexible manner, shielding the
systems under their own control from outside dynamics and at least providing a cleaner
architecture that is extensible and adaptable.

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://BPMI.org
http://www.processtext.com/abcchm.html

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7.2. BPM and the Process-Enabled SOA
Having introduced the foundations of BPM and its long-term vision, we now take a closer
look at what this means for the SOA architect.

7.2.1. THE PAST: DATA AND FUNCTIONS VERSUS OBJECTS VERSUS
SERVICES

This chapter focused on BPM and process-orientation, which comes at the very end of our
"enterprise renovation roadmap." We should now step back and look at the origins of SOAs
and what can be learned from their evolution.

In the early days of functional programming, data and functionality were strictly separated.
With the emergence of object orientation, people began to merge data and functionality
into encapsulated, reusable object implementations. This worked particularly well for large,
monolithic applications, such as complex graphical user interfaces. In the middle of the
1990s, people started to apply the concepts of object orientation to distributed systems.
CORBA and a number of other standards for distributed object computing emerged.
However, when applying distributed object technology in large-scale projects, it eventually
became clear that this approach had some severe limitations. As a result, Service-Oriented
Architectures emerged, with supporting technology platforms such as XML Web services.

So what problems with distributed objects led to the emergence of SOAs? The first problem
that we usually cite is the fine level of granularity of distributed objects, which often leads
to performance problems due to latency and other issues. An SOA addresses these
performance issues by adopting patterns of more coarse-grained objects, which require
less frequent interaction between clients and servers, thus reducing the number of network
roundtrips, marshalling overhead, and so forth.

However, a second and potentially more critical problem exists: Due to the complicated
interaction patterns that result from the fine-grained nature of distributed objects, the
reuse of distributed objects became increasingly complex. The complex dependencies
between different objects prevented efficient reuse and made these systems very inflexible
and hard to maintain because few people really understood these dependencies and the
impact that changes to individual objects and their interfaces would have on overall
systems.

With SOAs, we take a deliberate step back from the highly complex, fine-grained, highly
dependent distributed object models toward less complex, relatively coarse-grained,
loosely coupled (i.e., less dependent) component interfaces.

7.2.2. THE FUTURE: CORE BUSINESS LOGIC VERSUS PROCESS
CONTROL LOGIC

Rather than revert to a paradigm that separates data and functionality, the SOA should
develop an architecture that differentiates between core business logic and process control
logic. Both of these concepts comprise data and functionality, although in very different
ways. Unfortunately, these concepts are not as clean as the concepts of data and
functionality, but we believe that they are still essential for the successful implementation
of an SOA-based "enterprise IT renovation roadmap." Let's take a look at each concept
using concrete examples.

Core business logic comprises basic data access services, complex calculations, and
complex business rules. Data access services represent core business logic because they
make core business entities available to different systems. An example is a service that
enables different applications to read and update shared customer data. An example of a
complex calculation would be the calculation of an insurance premium based on statistical
data that is encapsulated by the service. Different processes such as sales, premium
adjustment, and risk assessment require this core business logic. It is not always clear
whether business rules represent core business logic (residing in a basic service) or
whether they should be a direct part of the process logic (e.g., residing in a BPMS or
process-centric service). Often, this will depend on the level of complexity of the business
rule. The simple rule that "all orders over USD 100,000 must be manually validated" might
well be part of the process control logic. However, a complex claims validation engine that
incorporates legislative data to check the validity of insurance claims would clearly fall into
the category of core business logic.

Related core business logic usually resides in a single service. As we stated before, these
services are relatively coarse-grained and loosely coupled (or independent) and do not
have complex interfaces (even though they might encapsulate a very complex piece of
logic such as a claims validation engine). In particular, services that represent core
business logic control their own transactions; they do not participate in externally
controlled, potentially long-lived transactions. The interaction with services representing
core business logic is usually OLTP-style, based on underlying short-lived transactions.
However, services representing core business logic might participate in complex processes
"orchestrated" by a BPM or a process-centric service.

Process control logic, on the other hand, has very different characteristics. As discussed at
the beginning of this chapter, many processes are dynamic in that they are prone to
frequent change and often require complex coordination with the process participants.
Often, these processes are related to non-tangible assets, in service industries for example.
Other examples include contract management, supply-chain management, sales of
complex tailored products, or software outsourcing processes.

Services managing process control logic, such as process-centric services, do not usually
have application state such as currency exchange rates, customer data, or airline seat
availability. However, they do have state related to the process itself. This process state
includes information regarding process participants (people and services), input from
participants, the actual position within the process flow, and basic rules. Process-centric
services are highly dependent on other services, in particular those services that represent
the core business logic. Such services provide the glue to bind the core business services.
In particular, process-centric services must coordinate complex activities that can span
more than one person, several major business entities, multiple locations, or long periods
of time.

The benefits of cleanly separating SOA services (see Figure 7-8) into services containing
core business logic (with a potentially long lifetime) and processes containing control logic
(with a usually much shorter lifetime) are manifold. In particular, this approach should
benefit the overall goal of our "enterprise renovation roadmap," which is increased agility.
If the separation is thorough, changes to existing processes and the introduction of new
processes should happen relatively smoothly because changes will be limited to services
that represent process control. Furthermore, the approach supports the encapsulation of
critical stateful codein particular, this means that changing one process does not affect
another process. Finally, business logic will be implemented only once, thus helping to
reduce redundancies and inconsistencies.

Figure 7-8. A key requirement toward an agile enterprise architecture
is that it clearly distinguishes between process control logic and core

business logic.

7.2.3. DESIGN IMPLICATIONS FOR SOA ARCHITECTS

Decomposing an SOA into services that represent core business logic and those that
represent process control does not simply mean moving back from a distributed object
paradigm toward a functional paradigm. Services representing core business logic go far
beyond simple data access services. Similarly, process control logic is not limited to pure
functionality. Although process control logic does not usually own large amounts of core
business data, such as the customer database, it still can manage a lot of internal data,
such as user input, input from basic services, and so forth.

The challenge for the SOA architect is to identify and categorize services accordingly,
taking many aspects into consideration, including business and process requirements, the
existing application landscape, make-versus-buy decisions, resource availability (e.g.,
development skills), SOA design considerations, and budget constraints. However, if an
enterprise is serious about the long-term renovation of its IT landscape, this decomposition
process will represent an important cornerstone in the overall process.

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

7.3. Conclusion
As we saw in this chapter, an SOA represents a good foundation for adopting a
process-oriented approach in the long term. You can introduce process orientation at
different levels in an SOA, with the most powerful level being represented by a Business
Process Management System (BPMS). However, migrating to a process-enabled SOA is a
long process that can easily run for a number of years. In the meantime, enterprises must
find ways to deal with processes and, in particular, process consistency in the short term.
This issue is the focus for the next chapter.

References

[Fra03] Frankel, David S. BPM and MDA: The Rise of Model-Driven Enterprise Systems.
Business Process Trends, http://www.businessprocesstrends.com/, June 2003.

[HC93] Hammer, Michael and James Champy . Re-engineering the Corporation. London:
Nicholas Brealey, 1993.

[Mil80] Milner, Robin . "A Calculus of Communication Systems." Lecture Notes in Computer
Science, volume 92, 1980.

[Rei1992] Reisig, Wolfgang . A Primer in Petri Net Design. New York: Springer Compass
International, 1992.

[SF03] Smith, Howard and Peter Fingar . BPM: The Third Wave. Tampa: Meghan-Kiffer Pr.,
2003.

URLs

http://www.bpmi.org

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

http://www-106.ibm.com/developerworks/library/ws-bpel/

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

http://www.businessprocesstrends.com/

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.businessprocesstrends.com/
http://www.bpmi.org
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.businessprocesstrends.com/
http://www.processtext.com/abcchm.html
http://www.businessprocesstrends.com/
http://www.bpmi.org
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.businessprocesstrends.com/
http://www.processtext.com/abcchm.html

Chapter 8. Managing Process Integrity
Achieving consistency in the execution of complex business processes that span multiple
subsystems is one of the most challenging problems in IT. The first part of this chapter
provides an overview of the problem scope, common solutions for achieving process
integrity, and how they fit into an SOA. The second part of the chapter provides a set of
concrete recommendations for SOA architects, based on an extension to our airline
example.

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.1. Data Versus Process Integrity
Process integrity is not necessarily a well-established or well-defined concept. The core
building blocks of process integrity are based on the widely established concepts of data
integrity. However, as we will see in the following, data integrity is insufficient for
addressing all integrity requirements of complex business processes spanning multiple IT
systems, which is why it is necessary to introduce process integrity as a concept that helps
to address these more complex and demanding requirements.

8.1.1. DATA INTEGRITY

Data integrity is an umbrella term that refers to the consistency, accuracy, and correctness
of data. The classical mechanisms for ensuring data integrity are often closely tied to the
concepts of relational databases. The primary types of data integrity include entity,
domain, and referential integrity. Entity integrity requires that each row in the table be
uniquely identified. Domain integrity requires that a set of data values fall within a specific
range (domain)for example, a birth date should not be in the future. Referential integrity
refers to the validity of relationships between different data tuples. Finally, user-defined
data integrity refers to types of data integrity that usually cannot be enforced by
commercial database tools. User-defined data integrity is typically enforced using a data
access layer, triggers, and stored procedures. These are all fairly technical concepts, and
typical business requirements for data integrity go far beyond technical concepts. These
are all fairly technical concepts, and typical business requirements for data integrity go far
beyond technical concepts. These concepts are typically limited to a single database. As
you will see in the following, more flexible concepts for ensuring process integrity are
required if you are leaving the domain of a single database or application system.

8.1.2. PROCESS INTEGRITY

The problem with complex business processes that span multiple IT systems goes beyond
the issues of traditional data consistency. In these kinds of situations, we are not dealing
with short-lived updates of data contained in a central repository, but instead with
long-lived processes that cross multiple systems. These processes do not often have a
well-defined state because it is not possible to obtain access to all the participants all the
time, a requirement necessary to determine the process state. This is particularly true for
processes that span the boundaries of business units or enterprises. Take the example of a
manufacturer who receives product parts from a supplier. If the manufacturer receives a
last-minute cancellation for an order, there will be time intervals where the internal
systems reflect this cancellation while the order for related parts is still with the supplier.
This is what we refer to as a process inconsistency.

8.1.3. TECHNICAL FAILURES VERSUS BUSINESS EXCEPTIONS

The key to maintaining process integrity is to ensure that failures within or between the
execution of the different steps that comprise a complex business process are captured and
the necessary steps taken to resolve the problem. It is necessary to differentiate between
technical failures on one hand and exceptions and special business cases on the other:

Technical failures. Technical failures include database crashes, network problems, and
program logic violations, among many others. Often, these problems can be addressed in
their respective context, for example through backup and recovery mechanisms (provided
by the DBMS; e.g., transactions), retries (in the case of network problems), exception
handlers (e.g., a Java catch clause), or process restarts (e.g., after a process terminated
because of a C++ NULL pointer exception). However, in many cases, technical failures
must be addressed using more complex, often custom-built solutions. For example,
systems must cope with network problems by temporarily storing a process state locally
until the subsystem to which it attempted to connect can be reached again.

Business exceptions. Business exceptions can range from very simple exceptions to
arbitrarily complex ones. An example of a simple exception is an attempt by a customer to
book a flight on a date that lies in the past. Such a simple domain inconsistency (see the
previous discussion on data inconsistencies) can be addressed at the database level. For
the sake of usability, it can be handled directly in the user interface (e.g., Java script in the
browser). However, simple domain inconsistencies have local impact only. An example of a
more complex business exceptionwith a more proliferating impactis an out of stock
exception, for example in an online Web shop. A straightforward solution is to tell the
customer that the requested item is not available. However, in the real world, this is
unacceptable. A better option is to trigger a process such as reorder item to ensure that
the item is available the next time a customer wants to buy it. However, this might also be
unacceptable because the customer is still lost. The best solution might be to constantly
monitor inventory and reorder in advance. This avoids or at least minimizes out of stock
situations and leads to the discussion on special cases.

Special cases. In almost all complex business processes, the complexity lies not in the
happy path case but in special cases that are dependent on the context of the process. For
example, a trading system might choose completely different execution paths, depending
on the type and size of trade and the customer's risk profile. The business process, under
consideration, could comprise a credit check of the customer. A negative result of the
credit check could be either an exception (resulting in a refusal of the trade) or a special
case requiring a different approach (e.g., resulting in another subprocess asking the
customer to provide additional collateral). In many situations, the entire business process
is a "special case" from a process integrity point of view. A good example is that of airline
seat reservations: in order to ensure maximum utilization of airplanes, many airlines
deliberately overbook flights, making the assumption that a certain percentage of bookings
will be canceled or that some passengers will not show up. Such systems are constantly
optimized to find the optimum level of overbooking, based on recent flight statistics.
Although at first sight, it appears inconsistent to overbook a flight, achieving process
consistency in this case requires finding the "right" level of overbooking.

The boundaries between business exceptions, special cases, and complex processes such
as a flight booking are not black and white. Often, each problem scenario requires its own
specific solution. In this chapter, we concentrate mainly on problems that are on the
exception or failure side of the equation and not so much on special cases. However, in
many cases, problems (exceptions or failures) at the technical or business level lead to
process inconsistencies that cannot be immediately addressed and that must be treated as
special cases.

8.1.4. WHO OWNS THE PROCESS LOGIC?

Process logic is rarely centralized but instead is spread across different systems, which
makes it hard to devise generic strategies for ensuring process integrity. Although in the
ideal world, all key process definitions would be managed by a central BPM (Business
Process Management) or Workflow Management System (WMS), this is rarely the case.
Although centralized management is reasonable in the B2B world because each company
wants to retain control over its own processes, even a single company is unlikely to have
centralized processes (or at least process implementations captured in a central system).

Take the example of a manufacturing company that has two systems, one for order
processing and one for billing. This is quite a common scenario in many companies. The
two systems are synchronized through nightly batch updates, where the order processing
makes all the changes and additions that came in during the day available to the billing
system using FTP (File Transfer Protocol). Assume that a customer makes an order one day
and cancels the order the next day. The information about the order has been passed from
the order processing system to the billing system during the nightly batch. The next day,
the customer cancels the order, and the order processing system is able to stop the
delivery of the order to the customer. However, the billing system cannot be notified until
the following night, when the next batch run is executed. In the meantime, the billing
system might already have debited the customer's account. Upon receiving the
cancellation the next day, the billing system now must provide the customer with a credit
note or take alternative steps to undo the debit. In the real world, the special cases caused
by the decoupling of such systems are much more complex and have often led to a
situation where individual systems have grown to a tremendously large size with a huge
internal complexity. Of course, we now have a wide range of middleware technologies to
enable real-time data exchange between systems where process logic is split between
different subsystems, but this type of batch scenario is still a reality for most companies.

By examining the many enterprise IT architectures that have grown over decades (the
famous Gartner Integration Spaghetti comes to mind), we will see that the majority of
enterprises have no centralized, enterprise-wide workflow systems but rather that
workflows are deployed more implicitly. Instead of a clean separation of application logic
and business rules, you will often find that the logic comprising a particular logical
workflow or process is scattered across a multitude of systems and subsystems, buried in
new (e.g., Java-based) and old (e.g., COBOL-based) applications, tied together using
point-to-point integration or middleware hubs. Even within a single application system,
business logic is likely to be spread across the presentation tier (fat clients or presentation
servers such as ASP or JSP), the middle tier (EJBs, Web services), and the database tier
(e.g., stored procedures).

All this makes it very hard to realize consistent processes. Regardless of how implicit or
explicit processes are realized in a distributed system (and how deliberate the decision for
using or not using a dedicated BPM or workflow product), process integrity is one of the
most difficult problems to solve.

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.2. Technical Concepts and Solutions
You can choose from a wide range of solutions to implement process integrity. These
solutions range from simple technical solutions such as distributed logging and tracing to
advanced transaction concepts. BPM systems provide the facility to address process
integrity on a less technical and more business-oriented level. BPMs are used to model and
execute business processes, as we discussed in Chapter 7, "SOA and Business Process
Management." They enable us not only to explicitly model special cases but also to provide
definitions for the appropriate countermeasures in case of exceptions. We look at each of
these solutions in turn, followed by recommendations for their application in an enterprise
SOA.

8.2.1. LOGGING AND T RACING

Logging and tracingat different levels of sophisticationis probably still the most commonly
used approach for providing at least rudimentary levels of process integrity on an ad-hoc
basis.

Log traces are commonly used for debugging but are also used in production systems in
order to identify and solve problems in day-to-day operations. Particularly in the case of
complex systems that integrate large numbers of non-transactional legacy systems,
logging is often the only viable approach to providing a minimum level of process integrity,
especially if processes or workflows are implemented implicitly (i.e., there is no dedicated
BPM system). Often, the operators of these types of systems employ administrators that
manually fix problems based on the analysis of log files. If the log file provides a complete
trace of the steps executed in a particular process until the failure occurred, the
administrator has some chance of fixing the problem, even if this often requires going
directly to the database level to undo previous updates or fix some problem to enable the
process to continue.

A key problem with logging-based problem analysis and repair is the lack of correlation
between the different log entries that relate to a particular logical process instance,
especially for processes that are implemented implicitly. If a process fails due to a
technical fault, someone must identify what has happened so far in order to complete or
undo the process. To do this, you must find the log entries that relate to the process,
possibly across different log files from different systems. Ideally, some kind of correlation
ID (related to process instances) should exist for each log entry because this helps with
the log consolidation (as depicted in Figure 8-1). However, often the only way to correlate
events is by comparing timestamps, which is a difficult task, especially with systems that
use distributed log files. For example, how is it possible to relate a JDBC exception written
into a local log by an EJB application server to a database deadlock event that was written
to a database log (both log entries are potentially relevant for identifying and fixing the
problem in the application)? In this case, a significant chance exists that both exceptions
occurred at the same time. The problem becomes even more difficult if processes are
long-lived and you are trying to find out which customer account was modified earlier by a
process that failed later, such as when updating a shipping order.

Figure 8-1. Consolidated logs can help system administrators deal
with error situations in distributed, long-lived processes. Log

consolidation can be performed across systems (e.g., providing the
ability to relate updates in one database to updates in another), as
well as within systems (e.g., relating database logs to application

server logs).

Nevertheless, logging and tracing is still important in many operational systems and is
often the only possible way to achieve at least minimum process integrity. Many projects
have therefore invested heavily in building a sophisticated infrastructure that helps with
distributed logging and log analysis. Often, this infrastructure is built on or tightly
integrated with system management platforms such as IBM Tivoli or HP Openview.

Chapter 9, "Infrastructure of a Service Bus," provides a detailed overview of how this can
be achieved in an SOA environment. Notice that distributed log consolidation can only
partly address technical failures and does not address process inconsistencies that relate to
business-level problems at all.

8.2.2. ACID TRANSACTIONS

Online Transaction Processing (OLTP) has been a key element of commercial computing for
several decades. OLTP systems enable large number of users to manipulate shared data
concurrently. For example, in an online flight reservation system, sales agents around the
world share access to flight booking information.

In order to support shared manipulation of data, OLTP systems are based on the concept of
transactions. Traditionally, the term transaction has been used to describe a unit of work in
an OLTP system (or database) that transforms data from one state to another, such as
booking a seat on a particular flight. The term ACID (atomicity, consistency, isolation,
durability) has been coined to describe the ideal characteristics of concurrently executed
and possibly distributed transactions, which ensure the highest level of data integrity. It is
described in ISO / IEC 10026-1: 1992 section 4.

We will use the simplified example of a money transfer with a debit and a credit update to
illustrate the properties of ACID transactions:

Atomicity: ACID transactions are atomic "all or nothing" units of work. If any one part of a
transaction fails, the entire transaction is rolled back. If the debit update works but the
credit update fails, the original debit update must be rolled back.

Consistency: ACID transactions transform data from one consistent state to another. In
our example, the sum of all account balances must be the same as before the transaction.
Of particular importance is the stipulation that a transaction ensures referential integrity: if
a customer account is deleted, orphan address records originally related to the customer
must also be removed (see the discussion on data integrity in the previous section).

Isolation: The internal state of a running transaction is never visible to any other
transaction. This is usually achieved through locking. In our example, there is a window of
time between the debit and the credit, during which the sum of all accounts will not add
up. However, nobody outside of the transaction can see this inconsistency.

Durability: Committed updates of a transaction are permanent. This ensures that the
consistent, up-to-date state of the system can be recovered after a system failure during
the execution of the transaction. If we have a crash after the debit but before the credit,
we can still recover the state before the start of the transaction.

Almost all commercial DBMS products support the concept of transactions enabling
concurrent access to a database, albeit with varying degrees of "ACIDity." The DBMS must
provide an appropriate concurrency control mechanism in order to deal with the concurrent
execution of transactions. The transaction performance and behavior in case of access
conflicts depends strongly on the choice of optimistic versus pessimistic concurrency
control strategies, the choice of locking (exclusive or shared locks) versus timestamps
versus versioning, and the locking/versioning granularity (tables, pages, tuples, objects).
Most DBMSs can be programmed or configured to use different concurrency control policies
(isolation level) in order to enable different types of applications or transactions to chose
the appropriate mix of performance versus transactional integrity.

8.2.3. TRANSACTION MONITORS AND DISTRIBUTED 2PC

Building applications with ACID properties becomes more difficult if you operate outside
the domain of a single system. Transaction Processing Monitors (TPMs) can be used to
ensure the ACID properties of a transaction that spans multiple databases or other
transactional resources (as depicted in Figure 8-2). A resource manager typically manages
these resources, which include DBMS and transactional queue managers.

Figure 8-2. Example for 2PC: A client begins a new transaction (1),
executes two updates (2 & 3), and attempts to commit the changes

(4). The transaction coordinator sends prepare requests to both
resource managers (5). The final step of the transaction (6) either
commits or aborts all updates. If both resource managers agree to

commit the transaction, the transaction coordinator sends a commit
to all participants. If one participant wants to abort, the transaction

coordinator asks all participants to abort.

Most commonly, the so-called Two-Phase Commit Protocol (2PC) is used to ensure ACID
properties for transactions that span more than a single resource manager. Transactions
are coordinated among different resource managers through a transaction coordinator,
which is part of the transaction monitor. At the end of each distributed transaction, the
transaction coordinator will coordinate the commitment of the transaction across the
participating resource managers:

• In the first phase (prepare), all participating resource managers must ensure that
all relevant locks have been acquired and that the "before" and "after" state of data
that has been modified in the context of the transaction has been persistently
captured.

• Depending on the outcome of the first phase ("voting"), the transaction coordinator
informs all participating resource managers whether to commit or rollback the
changes.

• A single "abort" vote will cause the entire transaction to be rolled back, helping to
ensure the atomicity property of the transaction. Only if all participants vote to
"commit" will they also be asked to make the changes permanent and visible.

The 2PC protocol assumes a very tight coupling between all the components involved in
the execution of the transaction. All participants must "play by the rules" in order to ensure
that the outcome of each transaction is consistent. If a participant does not abide by the
rules, the result will be a so-called "heuristic" outcome, that is, a transaction whose final
state is undefined. Furthermore, deadlocks become an issue that must be handled with
great care.

The most important standard in the area of transaction monitors and 2PC is the X/Open
standard for Distributed Transaction Processing (X/Open DTP). Among other protocols and
APIs, the X/Open standard defines the so-called XA interface, which transaction monitor
use to interact with a resource manager, for example to execute the "prepare" and
"commit" calls. Most commercial RDBMS and queue managers provide support for the XA
interface, enabling them to participate in distributed transactions. Well-established
transaction monitors include CICS, IMS, Encina (IBM), and Tuxedo (BEA). In the Java
world, JTS (Java Transaction Service) is widely established, and its counterpart in the
Microsoft world is MTS (Microsoft Transaction Server).

8.2.4. PROBLEMS WITH 2PC AND TIGHTLY COUPLED ACID
TRANSACTIONS

Although ACID transactions are a good theoretical concept for ensuring the integrity of a
single database or even a distributed system, in many cases, they are impractical in
real-world applications. We will now cover the key limitations of tightly coupled ACID
transactions in more detail.

8.2.4.1 Performance

Even in a non-distributed system, ensuring the isolation property of a concurrently
executed transaction can be difficult. The problem is that the higher the isolation level, the
poorer the performance. Therefore, most commercial DBMSs offer different isolation levels,
such as cursor stability, repeatable read, read stability, and uncommitted read.

In distributed systems, the execution of a distributed 2PC can have an even more negative
impact on the performance of the system, in some cases due to the overhead of the
required out-of-band coordination going on behind the scenes. Finding the right tradeoff
between performance and a high degree of concurrency, consistency, and robustness is a
delicate process.

8.2.4.2 Lack of Support for Long-Lived Transactions

Another big problem with systems based on transaction monitors and ACID properties is
that most database management systems are designed for the execution of short-lived
transactions, while many real-world processes tend to be long-lived, particularly if they
involve interactions with end users. Most OLTP systems (and transaction monitors and
underlying databases) use pessimistic locking to ensure isolation for concurrent
transactions. If a lock is held for long, other users cannot access the resource in question
during that time. Because some RDBMS-based applications still prefer page-level locking to
row-level locking, a lock can block resources that reside within the same page but that are
not directly involved in the transaction. The problem is made worse if the lock is held for a
long time. A typical solution to the problem with pessimistic locking is the application of an
optimistic, timestamp-based approach. However, this must often be performed at the
application level (e.g., by adding a timestamp column to the relevant tables) due to a lack
of out-of-the-box support from many DBMSs for timestamp-based versioning. If the
application is responsible for ensuring consistency, we now have a problem with our
transaction monitor: the transaction monitor assumes that all these issues are dealt with
directly between the transaction monitor and the DBMS during the 2PC. The XA-prepare
and -commit calls implemented by the resource manager are expected to manage the
transition from the "before" to the "after" state and locking/unlocking of the involved
resources. Effectively, this means that we must include customized logic into the 2PC that
deals with these issues at the application level by checking for timestamp conflicts before
applying changes. Even if some transaction monitors support application-level locking
through callbacks, which can be inserted into the two-phase commit, this approach
severely limits an "off-the-shelf" approach because work that should originally have been
split between the transaction monitor and the DBMS must now be performed at the
application level (at least partially).

8.2.4.3 Problems with the Integration of Legacy Systems and Packaged Applications

Perhaps the biggest problem with transaction monitors and 2PC is the lack of support for
two-phase commit using an XA interface from legacy systems and packaged applications,
such as an ERP or CRM system. Even if an ERP such as SAP uses an XA-capable database
such as Oracle or DB2 internally, this does not mean that SAP can participate in a 2PC: all
access to the SAP modules must go through an SAP API, such as BAPI, which is a
non-transactional API.

This lack of support for 2PC in many legacy systems and packaged applications severely
limits the application scope of distributed transactions and TP monitors because we
normally need to integrate applications instead of databases into complex workflows.

8.2.4.4 Organizational Challenges

If used at all, the adoption of 2PC has traditionally been limited to tightly coupled,
well-controlled intra-enterprise environments or perhaps single application systems with
short-lived transactions. Transaction coordinators are the control center for the
orchestration of the 2PC amongst resource managers. Not only is tight coupling required at
the protocol level, but also successful orchestration amongst participants requires that
everybody "plays by the rules" in order to avoid frequent heuristic outcomes that leave
transactions in an ill-defined state. Such tight control over databases, applications,
transaction frameworks, and network availability is usually limited to intra-enterprise
environments, if it can be achieved at all.

Conducting inter-organizational transactions between autonomous business partners is a
completely different situation. In an inter-organizational environment, we cannot assume
total control over all aspects of transaction processing. Relationships between trading
partners are typically loosely coupled, and the nature of intra-business transactions reflects
this loose coupling. The technical implementations of these transactions must deal with
this loose coupling and also with the fact that the level of trust between the transaction
participants is different from that of a tightly coupled, well-controlled environment. For
example, security and inventory control issues prevent hard locking of local databases:
Imagine a denial of service attack from a rogue partner that results in a situation where
locks are taken out on all available items in your inventory database, preventing you from
doing business while the locks remain in place. [1]

[1] Even with optimistic concurrency control, this would be a risk because a participant could block access during the normally short time
period of the transaction resolution (prepare/commit), during which all participants must lock the updated data, even when applying
optimistic concurrency control policies for transaction execution.

8.2.4.5 2PC Is Not Suited for Discontinuous Networks

When integrating B2B systems over the Internet, the discontinuous nature of the Internet
with its lack of QoS (quality of service) properties must be taken into account. This applies
to the execution of the actual business logic of a transaction across the Internet in addition
to any out-of-band interactions between transaction participants that are part of the
transaction coordination because they are also executed over the Internet. Relying on a
potentially discontinuous medium such as the Internet for execution of the two-phase
commit could lead to situations that increase the time between the prepare and commit
calls in an unacceptable way, with the potential for many heuristic outcomes.

8.2.5. NESTED AND MULTILEVEL TRANSACTIONS

The complexity of many business transactions and the fact that business transactions are
potentially long running has led to the development of advanced transaction concepts such
as multilevel and nested transactions.

A multilevel transaction T is represented by a set of sub-transactions T = {t1, t2, t3, ..., tn}.
A sub-transaction t i in T can abort without forcing the entire transaction T to abort. T can,
for example, choose to rerun t i, or it can attempt to find an alternative means of
completion. If t i commits, the changes should only be visible to the top-level transaction T.
If T is aborted, then so is t i. Multilevel and nested transactions are slightly different in the
way in which they deal with releasing locks on the completion of a sub-transaction.

Although some commercial transaction monitor implementations support the concept of
nested or multilevel transactions, the problem with their adoption lies in the lack of
support from resource managers (database and queue managers). Very few commercial
resource managers provide sufficient support for nested transactions. [2] Unfortunately, this
lack of support from the major commercial resource managers makes these good
theoretical concepts somewhat unusable in the real world.

[2] More commonly, RDBMS offer support for Savepoints or similar concepts, which define a point in time to which a partial rollback can
occur.

8.2.6. PERSISTENT QUEUES AND TRANSACTIONAL STEPS

Persistent queues can increase the reliability of complex processes. They can even create
transactional steps in a more complex process: when combined with transactions,
persistent queues can guarantee consistency for the individual steps of a process or
workflow. An application can de-queue messages in the context of a transaction. If the
transaction aborts, the de-queue is undone, and the message returned to the queue.
People usually use abort count limits and error queues to deal with messages that
repeatedly lead to an aborted transaction.

Figure 8-3 shows an example of a transactional process step with persistent queues. Notice
that if the queue manager is not part of the database system (i.e., is an independent
resource manager), the transaction effectively becomes a distributed transaction and
requires a transaction monitor that can coordinate the two-phase commit between the
database and queue managers.

Figure 8-3. A transactional process step with persistent queues.

Leverage the Concept of Transactional Steps

A transactional step is a set of closely related activities, executed in the context
of a single transaction. At the beginning of the transaction, an input token or
message is read from an input queue. The result of the related activities is
written into an output queue. Transactional steps are a key concept for ensuring
process integrity because they facilitate the decomposition of complex,
long-lived business processes into individual steps with short execution times
and high transactional integrity. Transactional steps dramatically increase the
robustness and flexibility of distributed systems.

8.2.7. T RANSACTION CHAINS AND COMPENSATION

The concept of transactional steps provides a great way for ensuring the integrity of
individual process steps. You can create complex workflows or processes by chaining or
linking together individual steps ("transaction chains"). However, the remaining issue is to
ensure the integrity of the overall process or workflow. Although abort count limits and
error queues provide a good means of ensuring no loss of information upon failure of an
individual step, it is still necessary to fix these failures after detecting them.

One possible way to deal with failures in individual process steps is to identify
compensating transactions that logically undo a previous transaction. For example, the
compensation for a debit transaction would be a transaction that credits the same amount.
An implementation of a distributed money transfer between two banks could be split into
different steps that debit an account A at bank X and pass a message to the receiving bank
Y using a transactional queue. If a problem occurs at bank Y (e.g., the account does not
exist), bank X would have to execute a compensating transaction, such as crediting the
appropriate account A (admittedly, this is a simplified example, ignoring the complexity of
intermediary clearinghouses, end-of-day settlements, etc.).

Notice that, unlike nested or multilevel transactions, chained transactions effectively relax
the isolation properties of ACID transactions because the results of each link in a chain of
transactions is made visible to the outside world. For instance, assume that we have
credited an account A in the first step of a transaction chain. When attempting to execute
the corresponding debit on another account B in the next step, we discover that the target
account B does not exist. We could now launch a compensating transaction to debit
account A and undo the previous changes. However, a time interval now exists between
the credit and subsequent debit of account A, during which the funds resulting from the
credit transfer could have been withdrawn by another transaction, leading to the failure of
the compensating transaction because the funds were no longer available. [3]

[3] Of course, in this example, the problem could be easily solved by reversing the order of the debit and the credit (starting with the debit
first). However, the example still illustrates the problem.

In order to apply compensating transactions in a workflow, we need to log the input and/or
output of the individual steps of a workflow because we might need this data as input for
compensating transactions.

Combine Transaction Chains with Compensating
Transactions

ACID properties are usually too strong for complex workflows. Instead, chained
transactions with compensating transactions offer a viable means of dealing with
process integrity. Transaction chains combine individual transactional steps into
more complex workflows. Compensating transactions undo previously executed
steps if a problem is encountered during the execution of a particular step in a
transaction chain.

8.2.8. SAGAS

SAGAs are formal workflow models that build on the concept of chained transactions
(steps). A SAGA describes a workflow wherein each step is associated with a compensating
transaction. If a workflow stops making progress, we can run compensating transactions
for all previously committed steps in reverse order. Although formal SAGAs are still at the
research stage, the concept of using a compensating transaction for dealing with specific
failure situations in a complex workflow is valid.

A number of problems exist with SAGAs and compensations in complex workflows,
particularly with the complexity of workflow graphs and the corresponding compensation
graphs. Typically, the complexity of compensation graphs increases exponentially with the
complexity of the actual workflow graph. Thus, it is generally impossible to define complete
compensation graphs. In addition, the need to deal with failures during the execution of
compensating transaction chains adds even more complexity.

Even if formal SAGAs and compensations for each possible combination of failures are
unavailable, it often makes sense to apply the concept of compensating transactions for
individual failure situations that have been specifically identified to fit this approach, such
as failures that we expect to happen frequently, perhaps because they are caused by
business conditions such as "out of funds."

8.2.9. BPM AND PROCESS INTEGRITY

As introduced in Chapter 7, Business Process Management platforms provide features to
enable business analysts and developers to design, execute, and manage instances of
complex business processes. Many BPM platforms are in fact based on or at least
incorporate some of the features described previously, such as chains of transactional
steps. In the following discussion, we examine how the formal introduction of a BPM will
help to increase the process integrity aspects of an enterprise application.

Firstly, explicitly modeling workflows and processes and separating them from low-level
technical code will have a positive impact on what process integrity actually means with
respect to a particular process because the BPM approach provides a comprehensible
separation between "technical integrity" and "process integrity."

Secondly, if the BPM engine provides a mechanism for monitoring and managing process
instances at runtime, we receive a powerful mechanism for controlling the integrity aspects
of individual process instances at no extra cost.

Finally, some BPM engines support the concept of compensating transactions, which is a
key concept for managing the rollback of partially executed processes after a failure
situation. A key question is whether compensating transactions are sufficient to ensure
process integrity, given that the compensation-based model is less strict than, for
example, the ACID properties of a distributed transaction. In particular, it is useful to
examine how to handle failures of compensating transactions. Do we actually introduce
compensations for failed compensations? Although in some rare cases this might be
required (some transaction processing systems in financial institutions have sophisticated
meta-error handling facilities that cope with failures in failure handling layers), this will not
be the case in most systems. Thus, the support for compensating transactions as offered
by some BPMs often presents a sound and flexible alternative to platforms that require very
tight coupling with applications and resource managers, such as transaction monitors.

8.2.10. RELATED WEB SERVICE STANDARDS

This book takes on the position that Web services are only one possible technical platform
for SOAs (see Chapter 9, "Infrastructure of a Service Bus"). However, we want to take a
quick look at standards that relate to Web services and process integrity, because this
subject is likely to become very important in the future, as Web services become more
pervasive. Unfortunately, the area of standards for Web service-based business
transactions (see Figure 8-4).

Figure 8-4. A number of different industry alliances and
standardization bodies are currently working on different Web

services-based transaction protocols. However, much of this work is
still in the early stages, and no dominant standard has emerged yet.

It is important to realize that most of this is still at an early stage. Simply defining a new
transaction standard is usually insufficient for solving process integrity problems. Even if a
standard emerges that is supported by a number of commercial transaction managers or
coordination engines, it is insufficient: The real problem is not to implement a transaction
or coordination engine that is compliant to a specific protocol, but rather to find widespread
support for such a new coordination protocol from resource managers. Without the support
of commercial databases, queue managers, and off-the-shelf enterprise application
packages, a new transaction standard is not worth much to most people. Recall that it took
the X/Open standard for Distributed Transaction Processing almost ten years from its initial
specification to its adoption by the most widely used commercial data-base products such
as Oracle, IBM DB2, and SQL Server. Even today, the support found in these products for
the critical XA interface (which is the DB side of the X/Open standard) is often weak.

Some of the more recent (pre-Web services, post X/Open) transaction standards, such as
the CORBA Object Transaction Service (OTS) and Java Transaction Service (JTS), were
designed to fit into the widely adopted X/Open framework, which also applies to some of
the previous Web services-based transaction standards. However, as we discussed in the
first part of this chapter, X/Open-based 2PC transactions are not suited to the long-lived
business transactions that you are likely to encounter in most Web service cases, which is
why the need exists for a new transaction or coordination protocol. It remains to be seen
which of the contenders will eventually become the dominant standard for loosely coupled
transaction coordination and at what point in time commercial resource managers will
support this standard. Until then, we must cope with ad-hoc solutions.

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8.3. Recommendations for SOA Architects
Having discussed the concepts of data and process integrity on a more conceptual level, it
is now time to examine concrete recommendations for SOA architects. In order to make
this discussion as hands-on as possible, we will first introduce an extension to our airline
example, which will serve as a basis for the discussion that follows.

8.3.1. EXAMPLE SCENARIO: TRAVEL ITINERARY MANAGEMENT

The management team of our airline has decided to expand the current online offering by
providing airline customers with the ability to not only book individual flights but also to
create complete itineraries for their trips, including multiple flight, hotel, and car
reservations.

The new itinerary management system will reuse and build upon several of the airline's
existing IT systems, in particular the customer management and billing systems. In
addition, the customer database will be expanded to support the management of complex
itineraries. Management decided that two different frontends are required for the new
system: a Web-based online frontend and a call center for telephone support of customers.
A further decision was to use different technologies in each of the two frontends: the
Web-based frontend will use thin HTML clients, whereas the frontend for the call center
agents needs more complex functionality and will thus be implemented as a VB GUI (fat
client).

The high-level architecture of the system is based on three backend services: customer
management (including itineraries), billing, and complex processes (in order to manage
customer complaints regarding itineraries or invoices). In addition, a number of partner
systems will have to be integrated, including partner airlines' flight reservation systems
and hotel and car reservation systems (although this is not a key aspect of this
discussion). Figure 8-5 provides an overview of the system architecture.

Figure 8-5. The new travel itinerary management system provides
services to manage customers, itineraries, invoicing, and complex

incidents.
[View full size image]

We will look at two key transactions throughout the rest of this chapter: confirm itinerary
and create invoice. Confirm itinerary is an important transaction of the customer
management system, which is responsible for confirming the individual flight, hotel, and
car reservations on an itinerary, involving potentially complex interactions with partner
systems. This transaction is potentially irreversible, in that the system might require a
cancellation fee when attempting to cancel a previously confirmed booking (assuming that
a cancellation is possible). Create invoice is a transaction of the billing system. Assuming
that a customer has proven creditworthiness, the system creates an invoice, calculates the
total amount and taxes for each individual item on the itinerary, and sends a letter with a
printed version of the invoice to the customer by mail.

These two transactions are interesting for several reasons. First, they are closely related at
the business level because the confirmation of an invoice inevitably causes costs and
therefore must be accompanied by a valid invoice under all circumstances. Second, these
transactions cross several organizational boundaries because they use two services
provided by different departments (customer management is a marketing function, and
invoicing is a back-office function) and even involve several different companies (other
airlines, hotels, and car rental companies). Finally, these transactions also cross several
technical boundaries. Notice in particular that in our airline example, these two
transactions are related to two independent databases.

8.3.2. OPTIMISTIC CONCURRENCY CONTROL SHOULD BE THE
DEFAULT

To begin with, it is necessary to explain how to deal with concurrent access to shared data
in an SOA. Two widely established models for managing concurrent access to shared data
by multiple users exist: optimistic and pessimistic concurrency control. Both come in
multiple flavors, but the general characteristics of each model can be summarized as
follows:

Pessimistic concurrency control. This model gives users exclusive access rights to a set
of data that they intend to modify, usually through the acquisition of a lock, which is
associated with the data in question. Other users are locked outthey cannot perform
actions that would conflict with the lock until the lock owner releases it. This model is
predominantly used in situations where heavy contention for data exists. The two key
problems with this model are lockouts and deadlocks. For these reasons, pessimistic
concurrency control assumes that lock times are short, which is normally only the case in
automatic processing of data records.

Optimistic concurrency control. In this model, no locks are acquired during the
transaction execution. Optimistic concurrency control permits different transactions to read
the same state concurrently and checks for potential write conflicts and data
inconsistencies only at the end of the transaction, when changes are actually written to the
database. Because this implies that the danger of losing one's changes at the end of the
transaction exists, this model is most effective in environments with low contention for
data.

Each approach has its own advantages and disadvantages, depending on the specific
problem context. As we will show, optimistic concurrency control is the preferable model in
an SOA.

Apply Optimistic Concurrency Control

Optimistic concurrency control is the model of choice for long-running
transactions, in particular those requiring interactions with human users or other
sub-systems. In addition, optimistic concurrency control supports a more loosely
coupled approach because resources are less dependent on clients, for example
with respect to lock duration. For these reasons, optimistic concurrency control
is the model of choice in an SOA because it significantly reduces dependencies
between different service components.

Of course, this is assuming that you are not limited by existing concurrency
control policies, as would be the case if a legacy system had to be incorporated
into an SOA. In that case, a flexible way to incorporate the existing policies into
the overall concurrency policy of the SOA is required, and you might have to
look at introducing intermediary services for bridging incompatible concurrency
control policies.

8.3.2.1 Implementing Optimistic Concurrency Control

Given the importance of optimistic concurrency control in an SOA, it is useful to examine
specific implementation models. In order to determine write conflicts, the optimistic
concurrency model must, at the end of each transaction, determine whether a competing
transaction has changed the data after it was initially checked out. There are different ways
to achieve this: using timestamps, version counts, or state comparison (directly or using
check sums).

When using timestamps or version counts with relational databases, the most popular
approach is to add a column for the timestamp or version number to each table that must
be controlled (alternatively, you can add only a column to the top-level data structure). In
order to determine write conflicts, you must add the timestamp or version number to the
primary key used in the WHERE clause of the UPDATE statement. This minimizes the
interactions required with the DBMS. If our timestamp or version number does not match
the number correlating to the primary key, this means that somebody has changed the
data after our initial read. In this case, no rows will be updated, and the user must reread
the data and reapply the changes.

The benefit of state comparison is that you don't need to alter the structure of the
database. Microsoft .NET provides an elegant implementation of these concepts in its
ADO.NET framework. ADO DataSets contain complex data objects that you can easily read
and write to and from databases, transform into XML, expose through Web services, and
version through ADO DiffGrams. However, in environments that do not provide direct
support for state comparison, the update logic is more complex, and we must maintain two
versions of data throughout the transaction, which complicates the data structure used in
our application. In these cases, timestamp or version number-based concurrency control is
preferable.

When choosing timestamp or version number-based concurrency control, it is necessary to
design service interfaces accordingly. This is best achieved by extending the root level
elements of the data structures used in the service definitions to include the timestamp or
version number. Notice that these data structures are typically fairly coarse-grained or
even document-oriented. The different elements in such data structures are usually stored
in different tables in a database. The assembly and disassembly of these complex data
structures into different rows in a database is hidden from the user. In an SOA, we can
deal with these data structures in an elegant manner that does not require operating at the
database level. Specifically, it is possible to employ optimistic concurrency control with a
level of granularity that best fits individual services. Conceptually, you can view this as a
check-in/check-out mechanism for related data. It is only necessary to focus on version
control at the level of root elements of these coarse-grained data objects, not at the level
of individual rows.

Notice that when embedding version information in data structures that are passed
between services in an SOA, you assume that you can trust clients not to attempt to
modify the version information. If you cannot trust your clients, it is necessary to revert to
the state comparison approach.

8.3.2.2 Use of Optimistic Concurrency Control in the Example

A good example of an entity that is accessed concurrently is the customer profile. Assume
that a customer is examining his profile online while simultaneously talking to a call center
agent by telephone, discussing a question related to his profile. While waiting for the
agent's answer, the customer changes the meal preference to vegetarian. At the same
time, the agent updates the customer's address details as instructed by the customer
during their telephone conversation. Both read the profile at the same time, but the
customer submits his changes just before the agent hits the Save button. Assume that the
customer profile is protected by an optimistic concurrency control mechanism, based on
timestamps or version numbers, for example. The agent now loses his changes because
the system detects a write/write conflict based on the version number or timestamp of the
agent's copy of the customer profile and thus refuses to apply the agent's changes. The
agent must now reread the profile before reapplying the changesan annoying situation,
from the agent's point of view.

So far, we have made the implicit assumption that the customer profile is protected by an
optimistic concurrency control mechanism. Does this still make sense in the light of the
previous conflict situation, which resulted in the loss of the agent's changes to the
customer profile? That depends on the concrete usage patterns of the system. Recall that
optimistic concurrency control is predominantly used in situations with low contention for
data. If one assumes that the chances of two users (such as customer and agent)
accessing the same profile at the same time are extremely low (which seems likely in our
overarching example), the optimistic approach might still be an acceptable solution. This
decision will typically be made on a case-by-case basis, looking at different entities in a
system individually.

Still, it is usually safe to assume that for all entities in an SOA, optimistic concurrency
control is the default implementation strategy, unless we know from the outset that we are
looking at an entity with very high contention. However, it is usually hard to predict
realistic contention levels, and therefore the optimistic approach should be used as the
default to start with. Over time, you will learn more about the critical entities of the
deployed system, and you will react accordingly, by migrating the access to these highly
contentious entities to more suitable concurrency control strategies. This evolutionary
approach helps to dramatically reduce implementation complexity, enabling you to focus
on those few entities that actually require a more sophisticated concurrency control
mechanism.

Assume in our customer profile example we discover over time that conflicting write access
is more common that initially anticipated. In this case, we can offer a number of different
solutions.

First, we could implement a "merge" routine, which would enable an agent to merge his
changes with those of the customer in the case of a conflict (see Figure 8-6). This would
work as long as both are updating different parts of the customer profile, as in the previous
example, where one changed the address and the other changed the meal preferences.
This approach would require a move from a version or timestamp-based approach to a
state comparison-based approach.

Figure 8-6. Normal version conflict detection can be combined with
"merge" routines to enable more effective handling of version conflict

situations.

Second, we could split the customer profile into finer-grained entities. For example, instead
of having one data structure containing all customer profile data, we could have one for
general data (such as name and date of birth), one for address information, one for
customer preferences, and so on. This should also help reduce the potential for write/write
conflicts.

Finally, pessimistic concurrency control enables us to avoid entirely conflict situations that
result in the loss of updates by determining potential read-for-update conflicts when
reading the data, far before we apply our changes (at the cost of locking out one of the
users with write intentions). However, notice that such pessimistic strategies in an SOA
usually come at much higher implementation costs and thus should be kept to a minimum.
The next section provides an appropriate example.

8.3.2.3 Use of Pessimistic Concurrency Control in an Example

Given the generally higher implementation complexity, pessimistic concurrency control in
an SOA is usually limited to situations where a write/write conflict with resulting loss of
changes is extremely critical. This situation can arise, for example, when updates are
performed manually and require a considerable amount of time but a merger with another
user's updates is almost impossible.

Recall that we are discussing pessimistic concurrency control at the application level, not at
the database leveldatabase locking mechanisms are generally not designed for long-lived
transactions! This means that the locking mechanism that is required for a pessimistic
concurrency control strategy must be implemented at the application levelthat is, all
services in our SOA that manage or manipulate data (which would be mainly basic and
intermediary services, according to our service classification in Chapter 5, "Services as
Building Blocks") must be implemented in a way that supports the pessimistic concurrency
control strategy. As a result, we would significantly increase the implementation
complexity (and hence the cost) of our SOA. In addition, application-level lock
management usually results in fairly complex workflows because it requires much
interaction with human users. For example, we need to provide a management
infrastructure that deals with situations where a user takes out a lock on a critical entity
but then fails to release it, for example because the user is out sick for a couple of days
during which the entity remains locked. Examples of systems providing this kind of
sophisticated infrastructure include document management systems and insurance claims
processing systems (often combined with the concept of work baskets, which assign
pending claims to individual clerks).

In our itinerary management example, we introduced the concept of an "incident," such as
a complaint about an itinerary or an invoice. In our example, call center agents process
these incidents. An incident can be a very complex data structure, including information
about the customer, the itinerary, the invoice, a change history, a contact history
(including copies of emails and faxes), a working status, and so on. Incidents are allocated
on a per-agent basis, meaning that a single agent is responsible for the resolution of an
incident. Thus, the customer only has to deal with one person, who has full knowledge of
the incident.

In order to achieve this exclusive association between incidents and agents, we need to
implement a pessimistic concurrency control strategy based on locks, which prevents an
agent from updating an incident owned by another agent. The implementation of the basic
locking strategy is relatively straightforward. For example, the incident table in the
database can be expanded to include a "LOCKED BY" column. If a row contains no
"LOCKED BY" entry, it is not locked. Otherwise, the "LOCKED BY" field contains the ID of
the agent claiming the lock. Notice that all application modules accessing the incident
must play by the rules, checking the "LOCKED BY" field. In our example, the incident table
is encapsulated by an incident service interface, which takes care of ensuring that only
requests from clients with the right credentials are allowed to access a particular incident.

Although all this sounds relatively straightforward, it is still considerably more complex
than a simple optimistic concurrency control strategy. In addition, we now need a
management infrastructure that enables us to deal with the allocation of locks on incidents.
The allocation of locks will most likely be embedded in some kind of higher-level
work-allocation system, based on the availability of agents with the right skills, combined
with a work load distribution algorithm. Each agent might own a personal work basket
containing all incidents allocated to him or her. Furthermore, we need a management
function that enables managers to manually reallocate incidents to other agents, in case a
customer calls with an urgent request when the original agent is unavailable, for example.
Figure 8-7 provides an example design for the logic that would be required.

Figure 8-7. Pessimistic concurrency control with dedicated locks.
Read-for-update conflicts are detected earlier, and only one user can

access the incident object at the time.
[View full size image]

All this significantly increases the cost and complexity of the solution. What was initially a
relatively simple concurrency control problem has suddenly grown into a complex workflow
and task management system.

8.3.3. MAKE UPDATE OPERATIONS IDEMPOTENT

Having discussed strategies that enable us to handle update conflicts in an SOA using
concurrency control, the next requirement is to look at problems arising from failures
during update operations. These occur because clients remotely invoke update operations
on the server housing the service for the transaction. Handling failures during remote
update operations in a distributed environment is a challenging task because it is often
impossible for a client to determine whether the failure on the remote server occurred
before or after the server executed the database update. Therefore, in the ideal world,
service operations that change the database (update transactions) should be
idempotentthat is, if they are invoked repeatedly, the corresponding function should only
execute once. For example, suppose a service implementation encapsulates a database
update. A client invokes the service, triggering the execution of the local transaction. If the
service implementation crashes before it has sent the reply back to the client, the client
can't tell whether the server has committed the transaction. Thus, the client does not know
whether it is safe to resubmit the request (or to call an appropriate compensation
operation).

Figure 8-8 shows two scenarios for a failure during the remote execution of an
ItineraryManager::add_booking() operation. In the first version, the update is
successfully executed, but the server fails before returning the reply to the client. In the
second version, the server fails before actually committing the changes to the database,
which will eventually lead to a rollback of the changes. In both cases, the client sees only
that a problem occurred on the server side; he has no easy way of finding out whether the
additional booking was added to the itinerary. This represents a problem for our client
implementation because we cannot safely reinvoke the operation without the risk of adding
the same booking twice (our implementation is not idempotent).

Figure 8-8. Fatal failures at the server side make it hard for clients to
detect whether an update was executedthat is, whether the fatal

failure occurred before or after the database update was executed
successfully.

[View full size image]

Notice that this type of problem applies only to certain types of update transactions: we
need to differentiate between update operations with "set" semantics on one hand and
"create/add/increment" semantics on the other. Typically, it is safe to reinvoke an
operation with "set" semantics because in the worst-case scenario, we simply override the
first update and don't actually change the overall outcome. "Create/add/increment"
semantics are a bigger problem.

Thus, there are two possible solutions for these kinds of problems: The first approach is to
change the semantics of an operation from "create/add/increment" to "set," which usually
will not be possible for "create" semantics, but in many cases will be possible for
"add/increment" semantics. The second approach is to make the non-idempotent
transactions idempotent by slightly restructuring the transaction. We can achieve this by
adding unique sequence numbers, as we will now discuss.

8.3.3.1 Use Sequence Numbers to Create Idempotent Update Operations

In the previous section, we discussed different failure scenarios for the
Itinerary::add_booking() update operation (refer to Figure 8-8), an operation with
"add/increment" semantics. Changing the semantics of this operation to "set" is not easy
because it would require reading the entire itinerary, adding the booking on the client side,
and sending back the entire itinerary to the serverresulting in an undesirably coarse level
of granularity. Instead, we can use unique sequence numbers to make the add_booking()
operation idempotent.

Sequence numbers can be passed either implicitly (as part of the message header or some
other place for storing request context information) or explicitly (as a normal request
argument). This is a design choice, and it depends on the flexibility of the SOA
infrastructure in the enterprise. The following example shows a possible solution for the
add_booking() problem with explicit sequence number passing:

interface Itinerary {
 SQN getSequenceNumber();
 void add_booking (in SQN s, in Booking b);
}

If performance or latency is an issue (we are potentially doubling the number of remote
interactions, at least for all update operations), we can assign sequence numbers in
bulkthat is, a client can ask for a set of sequence numbers in a single call. Assuming the
number space we use is fairly large, this is not a problemif clients do not use all the
sequence numbers, they can simply discard the ones they don't need.

Sequence numbers should generally be managed at the server side and assigned to clients
upon request. You could think of ways in which clients could manage their own sequence
numbers, by combining unique client IDs with sequence numbers for example. However,
this increases the complexity of the problem, and rather than providing a server-side
solution, it places the burden on potentially multiple clients.

8.3.3.2 Idempotent Operations Simplify Error Handling

A key benefit of using only idempotent operations in an SOA is that we can handle errors in
a more easy and elegant fashion. Firstly, we can reinvoke operations a number of times,
potentially minimizing the number of problems related to once-off error situations (e.g., a
server crash due to a memory corruption).

In addition, we can group related remote calls into a single block for error handling
purposes. This block can be executed repeatedly, regardless of where the failure occurred
in the block, because it is safe to reinvoke previously executed idempotent operations. The
following pseudo-code shows an example for the execution of two idempotent operations,
confirm_itinerary() and create_invoice(), in a single block:

while (retry limit not reached) {
 try {
 itineraryManager.confirm_itinerary();
 invoiceManager.create_invoice();
 }
 catch (FatalError e) {
 // manage retry limit counter
 }
}
if (not successful) {
 // we now have a number of possible error scenarios
 // which we must address
}

Of course, we are not saying that you should not catch all possible error situations. In
particular, a client implementation should handle user-defined exceptions individually on a
per-call basis. However, this approach makes sense for handling fatal failures in more
complex processes that are managed through recovery frameworks based on distributed
log consolidation (see the previous section). In this case, the framework is responsible for
determining, for example, if an itinerary has been confirmed but no corresponding invoice
created. A system administrator could detect this problem description and manually fix the
problem, by using an SQL console, for example.

8.3.4. AVOID DISTRIBUTED 2PC

In many cases, the adoption of log-based or other simple solution (as described in Section
8.2.1) is insufficient, such as when two operations must be executed together with "all or
nothing" semantics (atomicity), and a failure of one operation would lead to a process
inconsistency that cannot be handled by simple recovery routines.

Examine the confirm_itinerary() and create_invoice() operations described previously.
Because it is absolutely critical for our airline not to confirm an itinerary without creating a
corresponding invoice, the logging-based manual recovery framework described in the
previous discussion on idempotent operations might not be acceptable. The airline might
fear that the anticipated volume of problems could be too large for a systems administrator
to resolve manually in a timely manner, or the airline simply might not want to rely on a
systems administrator to deal with problems that are directly related to a potential loss of
income.

An intuitive solution is to use a transaction monitor and distributed 2PC to ensure the
atomicity of our two update operations, confirm_itinerary() and create_invoice().
However, as we have discussed in Section 8.2.4, there are many problems with the
distributed two-phase commit. In general, you should try to avoid using 2PC on the SOA
level (i.e., across multiple service instances). In the following, we will present a number of
potential solutions based on our itinerary management scenario and discuss their
respective benefits and drawbacks.

8.3.4.1 First Iteration: Client Controlled Transactions

A possible alternative to the simple error handling mechanism would be the introduction of
a transaction manager, which enables the grouping of both critical operations into one
distributed transaction, as depicted in Figure 8-9.

Figure 8-9. With client-controlled transactions, the transaction
boundary spans the entire system, including transactional clients, all

service implementations, and resource managers.
[View full size image]

Technically, this approach would solve our problem because we could now ensure that no
itinerary is finalized without creating a corresponding invoice. However, there are severe
problems with this approach:

• The approach requires that we enable our clients to deal with distributed
transactions. This is generally a bad idea, especially for lightweight user interfaces
and Web servers, because it dramatically increases the complexity of service usage.

• Other issues that were identified during the discussion on distributed 2PC and
tightly coupled ACID transactions at the beginning of this chapter can arise,
including the very tight coupling at the technology and protocol layers, low
performance, lack of support for long-lived transactions, and problems with
integrating legacy applications and application packages.

Essentially, we are in danger of creating a solution that is complex to implement and
administer and that severely limits the reuse potential of our backend services because
now only transactional clients can use them. For these reasons, we need to look at
alternative solutions.

Avoid Exposing Transaction Logic to Service Clients

In 99% of cases, exposing transaction control to service clients is a bad idea.
Distributed 2PC relies on extremely tight coupling of clients and server-side
services on many levels, which is fundamentally against the design principles of
Service-Oriented Architectures, which are about independent, loosely coupled
services.

8.3.4.2 Second Iteration: Server Controlled Transactions

Rather than expose transaction logic to service clients, you should consider moving
transaction control to the server side. Transactions that involve multiple updates (or even
that span multiple resource managers) should be encapsulated inside a single service
operation, where possible.

In our example, we could consider combining our confirm_itinerary() and
create_invoice() operations into a single confirm_itinerary_and_create_invoice()
operation. This would eliminate the need to expose transaction logic to our service client
because we have now moved the management of the distributed transaction to the server
side, as depicted in Figure 8-10.

Figure 8-10. Transactions spanning multiple resource managers
(databases and queues) can be encapsulated inside a single service
operation. However, the danger of creating monolithic services that

are not reusable exists.
[View full size image]

Although in this approach we can now hide the complexity for distributed transaction
processing from our service clients, there are still some issues with this design:

• Possibly the biggest problem with this approach is that our itinerary manager has
now become a monolithic service that assumes control over another service's
database and that is hardly reusable. By letting one service implementation access
another service's database directly, we have failed to achieve the most important
design goal of an SOA, namely, the creation of loosely coupled, independent
services.

• This approach requires that both databases participate in a 2PC. Ignoring the
previously described design issues, this might also represent a technical problem:
recall that the billing system that is responsible for invoice management is a legacy
system. This system might not be designed to participate in a 2PC, either because
the underlying database is not 2PC enabled (i.e., XA-compliant), or because the
billing application relies on total control over the database (a common scenario) and
cannot handle transactions that bypass it.

• Finally, this second iteration of our design still requires an infrastructure for
handling a transaction that spans two databases. This means that we still incur the
potentially high license cost for a transaction monitor, plus the additional overhead
for implementation and maintenance, which should not be underestimated. Not only
is our implementation complex, but it also requires higher-skilled developers and
systems administrators.

8.3.4.3 Third Iteration: Implicit Application Level Protocol

Given the problems with the first two iterations of our design, the third design iteration
could consider moving the process integrity issues that we have with our
confirm_itinerary() and create_invoice() operations to the application level. We could
agree upon an implicit application level protocol as follows:

• We split the creation and actual sending of the invoice into two operations (so far,
we have assumed that create_invoice() would create and send the invoice).

• The invoice is created before the itinerary is finalized. This helps to ensure that no
itinerary lacks a corresponding invoice.

• If we can create the invoice successfully, we can next confirm the itinerary and call
send_itinerary().

• Because send_invoice() can still fail, we create a background task in the process
engine that checks every night for inconsistencies between itineraries and invoices.
If this process detects a confirmed itinerary for which the invoice has not been sent,
the process ensures that this takes place.

Figure 8-11 provides an overview of this approach. Although it solves all the issues related
to distributed transaction processing, it is somewhat limited. In particular, it requires that
clients now adhere to a complex yet implicit protocol at the application level. For example,
no client can confirm an itinerary without previously creating an invoice. We are not only
relying on our clients to play by the rules, but we are also dramatically increasing the
complexity for our clients by forcing them to implement complex business logic. Chapter 7
provides a discussion of the disadvantages of putting complex business logic into
application frontends.

Figure 8-11. An implicit application-level protocol could be agreed
upon in order to ensure consistency between invoices and finalized

itineraries.

8.3.5. BUILD TRANSACTIONAL STEPS

Having discussed the issues with distributed 2PC and implicit application-level protocols in
the previous section, we have still not arrived at a completely satisfactory solution for our
confirm_itinerary_and_create_invoice() problem. In this section, we look at how the
concept of transactional steps might provide a better solution than the previous design
iterations.

Recall that a transactional step is a set of activities that are closely related to one another,
executed in the context of a single transaction, with a queue as an input feed for these
activities and another queue as a store for the output of that step. We now look at how this
concept can be applied to our problem.

8.3.5.1 Fourth Iteration: Fully Transactional Step

If we apply the transactional step concept to our
confirm_itinerary_and_create_invoice() problem, a possible solution might look as
follows:

• The confirm_itinerary() operation simply stores a message in a "pending
confirmations" queue.

• This queue serves as the input for a background thread, which represents a
transactional step. This thread uses the "pending confirmations" queue as an input
queue. For each pending confirmation, the appropriate steps (confirmation and
invoice creation) are executed in the context of a transaction, and the result is
stored in an output queue of "confirmed itineraries."

• The system notifies the customer as soon as the itinerary has been successfully
finalized. Alternatively, in the case of a problem, a dialogue with the customer
begins, aimed at solving the problems with the itinerary.

Figure 8-12 shows a possible implementation architecture.

Figure 8-12. The introduction of a transactional step on the server
side enables us to decouple the client's confirm_itinerary()confirm_itinerary()confirm_itinerary()confirm_itinerary() call from

the actual server-side processing of the confirmation request.
[View full size image]

This approach solves a number of the problems with the first couple of design iterations
and also provides additional benefits:

• We remove complexity from the clients and instead place it into a service under our
own control.

• We no longer risk losing income due to the system confirming itineraries without
sending out a corresponding invoice because the interactions with the input and
output queues are transactionally secured.

However, there are also some significant drawbacks:

• This approach is not much better than the second design iteration with its
confirm_itinerary_and_create_invoice() approach because this design also
requires that the ItineraryManager accesses the billing system's database directly,
thus bypassing the service layer, which was designed to provide service-oriented
abstractions from this database in the first place.

• Finally, we have now reintroduced the need for a transaction monitor, which
coordinates the 2PC between different queues and databases, with all associated
costs and complexities.

8.3.5.2 Fifth Iteration: Semi-Transactional Step

Rather than adding complex logic to the itinerary manager service and accessing the billing
system's database directly, we now create a new ConfirmationManager service. This is a
process-centric service (see Chapter 6, "The Architectural Roadmap") that implements a
"less" transactional step to encapsulate the required functionality. Figure 8-13 provides an
overview of the implementation architecture. The confirm_itinerary() operation stores only
a request in the "pending confirmations" queue, which serves as an input queue for
background threads. This thread processes pending confirmations in a transaction. The
transaction calls the basic services ItineraryManager and InvoiceManager. Notice that these
calls are part of the transactionthat is, we do not assume that a transaction context is
propagated to these servicesthese services execute their own transactions to update their
databases but are not part of the ConfirmationManager's transaction.

Figure 8-13. Introducing a dedicated ConfirmationManager in
combination with semi-transactional steps enables us to limit the

transaction boundary to the confirm_itinerary()confirm_itinerary()confirm_itinerary()confirm_itinerary() implementation. We
are thus no longer forced to access another service's database

directly, as this is a fundamental violation of SOA design principles.
[View full size image]

This final design iteration based on a "less" transactional step solves our most pressing
problems:

• We are now back to a clean separation between "basic" and "process-oriented"
services (see Chapter 5 on service types), significantly enhancing the reusability
and maintainability of the system.

• The basic services (customer and invoice manager) now fully encapsulate their
databases, and we do not bypass these services as part of the itinerary
confirmation. Instead, they retain their reusability potential.

• The new ConfirmationManager service now contains the specialized (and probably
less reusable) business logic, which is required to finalize itineraries.

• We do not require a 2PC across multiple resource managers (we rely on the queue
manager's built-in transaction mechanism), and thus we do not need a transaction
monitor, which reduces complexity and costs.

However, there is one outstanding issue with this design: The transactional brackets
around the in-queue and out-queue only offer a limited guarantee of non-approval of
itineraries without creating a corresponding invoice. These brackets provide only a
guarantee that we do not lose any itinerary confirmation requests due to the transactional
nature of the queues. However, we still need to deal with the scenario in which the
transaction logic fails because it is possible to confirm the itinerary even when the
subsequent creation of an invoice fails. Because the requests to the itinerary and invoice
manager are not transactional, aborting the confirmation manager's transaction will not
undo the changes already applied to customer and invoice databases.

Instead of aborting the step's transaction in case of a problem, we should create an error
token, place the token into an error queue, and commit the transactionwe are still
guaranteed not to lose any information because the error queue is part of the transaction.
However, we must deal with this problem, and we will look into these issues in the next
two sections.

8.3.5.3 Sixth Iteration: Choosing the Right Level of Granularity for Individual Steps

The basic idea of transactional steps is that we can combine them to create chains or even
graphs of relatively independent yet logically related steps.

Choosing the right granularity for individual steps is difficult. On one hand, we do not want
to clutter the system with meaningless micro-steps. On the other hand, the more
fine-grained the individual steps, the more flexibly they can be rearranged to address
changes in the business logic or to enable better error handling. In the case of the itinerary
management example, we need to anticipate two basic problems: a problem with the
itinerary itself (e.g., a confirmed seat on a flight is no longer available due to cancellation
of the flight) or a problem with the creation of the invoice. Each case must be addressed
individually by invoking the matching compensation logic.

We could also have achieved this by adding appropriate error handling logic. For example,
we could have individual try/catch blocks for each remote invocation, as follows:

BEGIN
{
 pendingConfirmationQ.get();
 try {
 itineraryMgr.confirm_itinerary();
 }
 catch (e1){
 errorQ.put(e1)
 COMMIT;
 return;
 }
 try {
 invoiceMgr.create_invoice(r1);
 }
 catch (e2) {
 errorQ.put(e2)
 COMMIT;
 return;
 }
 confirmedItineraryQ.put();
}
COMMIT;

However, this approach limits the flexibility of rearranging the executing order of each
individual step because code must be modified to change the order of execution.

Another approach is to change the design by splitting this step into two independent steps,
which are then linked together. Each step is now responsible for handling only a single part
of the overall transaction. In the case of a problem with each of these steps, we can put
the resulting error token into a separate error queue. The first error queue is responsible for
handling problems with itineraries, while the second is responsible for handling problems
with invoices. Figure 8-14 provides an overview of how the initially large transactional step
can be broken down into two more fine-grained steps.

Figure 8-14. Introducing finer-grained transactional steps increases
the flexibility of the system, especially with respect to error handling.

[View full size image]

Assuming a sufficiently generic system design (in particular the message formats passed
between the different queues), the use of more fine-grained transactional steps facilitates
the reconfiguration of the execution order by changing the configuration of our input and
output queues. This permits us to change the system on the fly to improve the way in
which we handle error situations. For example, we might want to change the order of steps
to create the invoice before confirming the itinerary. Notice that even if this reordering
does not happen completely "on-the-fly" (which is the likely caseoften the "on-the-fly"
reconfiguration fails due to some minor data conversion or configuration issues), we will be
pretty close to a completely flexible solution. In particular, this approach eliminates the
need to set up a large project to implement the required changes because such a
reconfiguration represents much lower risks compared to a major change in the application
code.

Another benefit of this approach is that we limit the number of error scenarios in individual
steps, and we can associate more meaningful error queues with each stepeach problem
type is reported into a separate error queue.

8.3.6. USE SIMPLE YET FLEXIBLE COMPENSATING LOGIC

In the theory of SAGAs and chained transactional steps, each step in a chain is associated
with a compensating transaction. In case of failure during the processing of a transaction
chain, we simply call the compensating transactions for each of the steps executed so far.
In our itinerary management example, confirm_itinerary() and create_invoice() could
be associated with compensating transactions, which would aim to undo the previous
changes, as shown in Figure 8-15.

Figure 8-15. In an ideal world, each step in a transaction chain is
associated with a compensating transaction. In case of failure, the
compensating transactions for all successfully executed steps are

called to undo all previous changes.

This works in theory, but in practice, there are several limitations to this approach. First, in
many cases, a specific operation will have no simple compensating transaction. Take our
confirm_itinerary() operation: If an itinerary has been confirmed once, real costs have
been created because we will have made reservations for flights, cars, and hotels, which
cannot simply be canceledin many cases, a fee will be associated with a cancellation.

Second, many business processes are not linearthat is, they are not simple chains of
transactions but are based on complex, context-sensitive decision graphswhere context
refers to technical as well as business-related information and constraints. Although in
theory the concept of compensation should not only apply to linear chains but also to
complex graphs, this dramatically increases the complexity of compensations, especially
due to the context sensitivity of many decision trees, which often will have an impact on
different ways to compensate particular nodes.

Finally, we are likely to encounter problems not only in the transactional steps but also in
the compensating transactions. How do we deal with a problem in a compensating
transaction? Is there a compensation for a failed compensation?

In many cases, all of this means that a 1:1 mapping between transactional steps and
compensating transactions is not feasible. Recall our discussion on exceptions versus
special cases at the beginning of this chapter. For example, is an "out of stock" situation an
exception or simply a special case that must be dealt with at the business level?

In our itinerary management example, it seems very likely that an overly simplistic
compensation approach is not going to work. For example, we will most likely have to take
into account cancellation fees resulting from a complete or partial cancellation of an
itinerary. Figure 8-16 shows how a revised, more realistic workflow for itinerary finalization
and invoice creation might look.

Figure 8-16. This example shows how the handling of exceptions in
the itinerary finalization becomes part of the workflow. Thus, we are

no longer dealing with exceptions or compensating transactions.
Instead, we treat these situations as "special cases" within the

normal workflow.

Consider BPM If It Is Getting More Complex

If the complexity of your process definitions, including special cases and
compensation logic, is getting out of hand, you might want to consider using a
BPM platform. Make sure that this platform provides you not only with
sufficiently rich graphical tools for modeling your standard and special case
processes but also the ability to model compensating transactions and a
framework for automatically mapping these associated compensating
transactions to a transactional execution environment.

8.3.7. COMBINE SOA, MOA, AND BPM TO INCREASE FLEXIBILITY

When examining projects with very complex process logic that spans the boundaries of
enterprises or other organizational barriers, it makes sense to look at the combination of
SOA, MOA, and BPM to increase the flexibility with which processes can adapt to changes
on either side of the organization's boundary, as depicted in Figure 8-17.

Figure 8-17. Combining SOA, MOA, and BPM provides a flexible means
of integrating complex processes that cross enterprise boundaries.

[View full size image]

In such a case, the SOA would provide basic services and process-oriented services within
each individual enterprise, as we discussed in Chapter 4. The basic services provide the
core business logic, while the process-centric services (e.g., implemented by a BPM
engine) provide the actual business process logic.

Using an MOA rather than an SOA to provide integration across enterprise boundaries
makes sense in many cases. Firstly, an MOA can provide greater flexibility with respect to
message formats and different types of messaging middleware. In addition, inherently
asynchronous MOAs are better suited to protect an enterprise against time delays on the
partner side, which are outside the control of the issuing side. In addition, the SOA usually
provides store and forward functionality ("fire and forget"), which eliminates some of the
issues we discussed earlier on with respect to making operations idempotent. Finally, an
MOA in combination with a BPM is well suited to represent Petri-Net-like communication
trees with multiple branches, which can often be required in these types of integration
scenarios.

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

8.4. Conclusion
Ensuring process integrity is often more a project management issue than a technical
issuethe available technical solutions are relatively well known, but how and when to select
each solution is often a key problem. Finding the right tradeoff between integrity
requirements from a business perspective and sophistication of the technical solution is a
task that requires careful analysis from responsible architects and project managers.

It is important for project managers to understand that a very clear tradeoff exists between
the level of process integrity and implementation costs. For example, while the two-phase
commit protocol potentially provides a very high level of integrity (at least in
homogeneous, tightly coupled environments), it comes with very high implementation
costs because it requires highly skilled architects and developers and very expensive
software. However, transactional steps incur lower costs and offer reasonable process
integrity properties. They often provide a very good cost/integrity tradeoff (Figure 8-18
categorizes several approaches to process integrity in regard to their cost integrity ratio).

Figure 8-18. It is key for project managers to realize the tradeoff
between the level of process integrity provided by a particular

technical solution and its implementation costs.
[View full size image]

If technical project managers can communicate these tradeoffs clearly to the decision
makers at the business level, they enable them to make judgments regarding the level of
consistency requirements they have and the money they are prepared to spend on them.
Chapter 13, "SOA Project Management," adds to this discussion by providing concrete tools
for project managers to enable them to find the right tradeoff between implementation
costs and integrity requirements.

References

[Co70]Codd, E. F . A Relational Model of Data for Large Shared Data Banks. ACM
Communications, Volume 13, No 6, June 1970.

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 9. Infrastructure of the Service
Bus
In this chapter, we describe the different elements that constitute an SOA-enabling
infrastructure, referred to in the following as a service bus. One of the fundamental
principles that this chapter is based upon is the assumption that it is impossible for large
organizations to enforce standardization on a single technical architecture. We believe that
this is especially true with respect to communication middleware, application platforms, or
interface technology. Consequently, this chapter is not about describing specific technical
standards for a service bus. Instead, we propose to look at a service bus as a kind of meta
bus, which is comprised of the different existing software buses and middleware platforms
that you will find in your organization. The job of the service bus is not only to enable basic
interaction with different service components across the different platforms, but also to tie
together the different higher-level infrastructure functions of these platforms.

After a general overview of the service bus concept in Section 9.1, Section 9.2 looks at
logging and auditing, followed by scalability and availability in Section 9.3, and security in
Section 9.4.

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.1. Software Buses and the Service Bus
People often use the term software bus to refer to the technical infrastructure of the
distributed environment. We consider a software bus to be analogous to the well-known
concept of a hardware bus. Much as a hardware bus enables the integration of hardware
parts from different vendors, for example when assembling a desktop computer, a software
bus is the standardized way of hooking together any software components.

9.1.1. BASIC CONCEPTS OF A REAL-WORLD SERVICE BUS

The most widely known software bus is OMG's CORBA, essentially a communication
infrastructure for individual object instances. The CORBA infrastructure enables an object
to locate any other object on the bus and invoke any of that object's operations. The
CORBA model does not make a strict distinction between clients and servers and is
essentially a symmetrical bus. CORBA is a very mature technology, but unfortunately, its
underlying concept leans itself to a very fine-grained communication infrastructure that
created a history of maintenance and performance problems in many projects.

Whereas CORBA is very generic bus technology with a focus on object orientation, another
concept of a software bus recently emerged called the Enterprise Service Bus [DC2004].
Although as of this writing, it cannot be considered anywhere near a standard, its main
elements are a coarse-grained XML communication protocol together with a
message-oriented middleware core to perform the actual message delivery.

A number of other software buses are on the market, among them the Enterprise Java
Beans as part of the J2EE specification, Microsoft's .NET, and various messaging products,
including IBM MQSeries and Tibco Rendezvous. All these buses require standardization on
a single interaction and communication model, as shown in Figure 9-1. For example,
CORBA and EJB promote synchronous object-oriented communication, whereas messaging
products such as MQSeries support asynchronous document-oriented communication.

Figure 9-1. Ideal software bus that supports a single communication
model. All applications must conform to the same standard, such as

CORBA or MQSeries.

In a real enterprise application landscape, a single communication model will hardly
suffice. Instead, you will need various communication models based on the requirements
of the individual application. Vendors have long understood this point, and they provide
environments that support multiple communication models at the same time. The J2EE
environment, for example, supports various communication types, as shown in Figure 9-2.
EJBs provide synchronous object-oriented communication, the Java Message Service (JMS)
provides messaging, the system supports communication using email and SOAP, and the
Servlet specification provides general support for HTTP applications.

Figure 9-2. A software bus that supports various communication
models at the same time, such as synchronous, asynchronous, or

file-based communication.

In the real world, the situation is usually even more complicated because products from
different vendors that support similar communication models are often in use at the same
time. This situation can arise when different departments of the company introduce
competing technology or when a new technology enters the environment as the result of a
merger or acquisition. A typical enterprise "software bus" will usually look like that
depicted in Figure 9-3.

Figure 9-3. The infrastructure of a real-world enterprise will normally
consist of various products that support similar communication

models.

Of course, single applications might use various communication models when
communicating with each other. For example, an application might call another one using a
synchronous technology if an immediate answer is required and might use an
asynchronous communication model if it requires guaranteed and reliable delivery.

However, no matter what technology you use, an enterprise SOA infrastructure must
conform to certain standards across the board in order to achieve certain goals, such as
security and auditing that is independent of the product or the network protocol. In this
respect, a service bus is not like a general software bus. An enterprise must create a
higher-level entity, some kind of Über bus or Meta bus that endorses all the various
products and technologies of the enterprise.

Create a Meta Bus

Do not enforce the usage of a single product, even one that supports many
communication models, as the sole service bus of the organization. Plan for a
service bus on a meta level that supports technical services at a higher level and
adds flexibility that can be critical for the business during acquisitions or major
restructuring.

This is why most of the products available on the market cannot be considered service
buses in their own right. Instead, they fall into oneor bothof two categories:
communication frameworks and execution containers. Communication frameworks are
essentially infrastructures that only facilitate communication without many additional
infrastructure services. Practically all communication frameworks are built around the
concept of a stub and a dispatcher. Typical communication frameworks are MOM products
and plain remote method invocation frameworks. Execution containers provide much more
sophisticated infrastructure support, including support for transactions and security.
Typical execution containers are CORBA and the EJB container.

However, do not develop this meta bus in isolation from concrete application projects.
Avoid keeping the concepts too abstract; do not build too many technical features into it
initially. Chapter 12, "The Organizational SOA Roadmap," describes how and why you
should develop an SOA infrastructure gradually, hand-in-hand with concrete business
application projects. Chapter 16, "Credit Suisse Case Study," discusses a case study,
outlining how a company introduced a synchronous Information Bus (CSIB), an
asynchronous Event Bus Infrastructure (EBI), and a file transfer-based Bulk Integration
Infrastructure (BII), all driven by the demand from application projects, which in turn were
driven by concrete business demands.

9.1.2. SERVICE STUB AND DISPATCHER

A service stub is a piece of software that is located at the client side of a service (see
Figure 9-4). It provides a local API that presents a convenient access method for the
remote service. The service stub encapsulates technical functionality such as handling of
the network and application protocol, marshalling and unmarshalling of data, and standard
security mechanisms.

Figure 9-4. A service stub represents the service for a client. It
provides a convenient API that the client developer can easily use.

The service stub encapsulates the complexity of the technical access
of the service such as network protocol, marshalling and

unmarshalling of data, standard security mechanisms, etc.

The service dispatcher is the counterpart of the service stub. It receives incoming network
requests that are generated by the service stub. The service dispatcher analyzes these
requests technically and invokes the requested operation with the appropriate data.

9.1.2.1 Code Generation

Code generation is a powerful technique that can be applied to SOA projects in an efficient
manner. In such a scenario, the code generator encapsulates all technical knowledge
regarding distribution and service invocation. The application developers can focus on the
business aspects of interface definition, while the code generator covers technical issues.

Code generation decouples the functional code from the technical code. It provides support
for different programming languages, various network and application protocols, and
different operating systems with a single code base. Code generation can be used to
generate test clients and test serversa handy feature that can prove beneficial for the
overall development process. Last but not least, code generation typically increases the
quality of the technical code. Contrary to handcrafted code, the generated code will be
uniform. Improvements in generated code (e.g., better marshalling or connection
management) can be made without causing an impact on current applications if the
changes are restricted to the inside of the API of the generated code.

Projects that do not use code generation often suffer from a cut-and-paste syndrome. In
this scenario, developers of business functionality integrate one functioning version of the
technical code into their implementation of the business logic. This code will be repeatedly
reused, while slight changes to that code can lead to many different implementations of
the same technical functionality.

Successful Use of Code Generation

Use code generation to automate repetitive tasks that cannot be resolved using
code libraries, such as generating type-safe service interface stubs, which
provide high-performance marshalling code. Avoid changing generated code
manually at all costs! You cannot regenerate code without losing your changes,
which will be a nightmare if you use generated code across many different
interfaces. Instead, modify the code generator if possible. Alternatively, use
smart scripts that can differentiate between handcrafted and generated code
within a single file.

Basically, you can use code generation in a top-down or bottom-up fashion. Whereas
top-down code generation is based on formal interface definitions such as IDL or WSDL,
the bottom-up approach analyzes the source code of the service implementation. A typical
candidate for top-down code generation is CORBA, where stubs and skeletons are
generated from IDL interface definitions. Many modern Web service frameworks, such as
.NET or J2EE application servers, support bottom-up mapping of existing APIs (e.g., Java
classes) to Web service interfaces (WSDL), often using a combination of internal code
generation and reflection.

9.1.2.2 Top-Down Approach

The precondition for top-down code generation is the usage of a formal interface definition
language such as IDL or WSDL.

Using a formal interface definition language has a great impact on the development
process. It decouples the formal description of interfaces from the actual coding. As
illustrated in Figure 9-5, this decoupling enables development teams to simplify the
coordination of the service programmers and their clients.

Figure 9-5. Code generation is a powerful mechanism to increase
development productivity and quality. The code generator

encapsulates the technical complexity of the communication between
client and service. This enables the developers of both client and

service to focus on the functional code.

9.1.2.3 Bottom-Up Approach

Code generation can also be performed using low-level implementation APIs (e.g., Java
classes or CICS transaction programs) rather than from abstract,
implementation-independent interface definitions (see Figure 9-6).

Figure 9-6. Bottom-up code generation is based on the service
implementation. It is therefore dependent on a specific programming

language and the details of its runtime environment and
implementation technique. The code generator can use a service

description language such as WSDL as an intermediate
representation.

This technique is particularly useful when transforming legacy applications into services. If
existing code must be exposed as a service, the generation of the service interface can
save a lot of development time.

The caveat is that we get service interfaces that are programming language-specific,
technology-focused, and very fine-grained. This is particularly true for the transformation
of the traditional application with terminal-based user interfaces such as VT3270. The user
screens, which are the natural structural elements of these applications, might be of an
inappropriate granularity for a service interface.

The bottom-up approach can also be applied to the development of new applications.
Although there is no explicit representation of the interface in a formal document, the
careful design of the interface is still pivotal and cannot be omitted. With the bottom-up
approach comes the danger of ad-hoc design, although there are also benefits to this
approach. For example, no additional development tools are required for the design of the
service. The developer of the service can use the preferred development environment and
modeling tools that are used for the development and design of the original code. If the
code generator is integrated into this environment, you can achieve very short turn-around
times.

The bottom-up approach leverages a development model that is driven by the
implementation of the services. Very efficient development environments exist that
support the bottom-up approach such as Microsoft's Visual Studio .NET. The downside of
such efficiency is a high degree of technical dependencies that could result in a technology
lock-in that jeopardizes all the flexibility that should have been leveraged using the SOA
approach. Therefore, you should take care when deciding whether to employ a bottom-up
or top-down strategy.

Top-Down Service Design Is the Preferred Approach in an SOA

Service definitions are probably the single most important artifacts in an
enterprise SOA. Therefore, it is important that you put a lot of thought into the
specification of each individual service. Ensure that all service definitions

• Meet business requirements

• Are designed at the right level of granularity

• Provide potential for later reuse

• Can be implemented in a way that ensures scalability and integrity

• Are independent of any underlying implementation

• Provide appropriate service level specifications

Service definitions should be designed explicitly; they should not be generated
from lower-level APIs automatically.

9.1.2.4 Code Generation With MDA

Model Driven Architecture (MDA) is a contemporary approach to managing
technology-independent service specifications, and implementing and managing "SOA
meta-bus" architectures, as described in Section 9.1.1.

MDA is the umbrella-term for a number of specifications that are currently standardized by
the Object Management Group (OMG), including UML, XMI, and MOF. MDA leverages UML
to specify Platform Independent Models (PIMs) and Platform Specific Models (PSMs). In
MDA terms, a PIM is the formal specification of the technology-neutral structure and
function of a system, while a PSM adds the technical details which are needed for the
concrete implementation of a software component. The Meta-Object Facility (MOF) is at the
heart of the MDA concept. MOF-based meta-models allow the implementation of model
repositories, the exchange of models (via XMI), and the transformation between different
models, e.g. from a PIM to a PSM. While not limited to code generation techniques, MDA is
well suited to using these techniques by generating the mapping from an abstract model
to a concrete model implementation. MOF is particularly well suited to define and
implement model transformations. A number of tools and standards support the
transformation of MOF meta-data, e.g. transformation of UML models into XML, CORBA IDL,
Java, and lately into WSDL. This allows for the implementation of very sophisticated code
generators, which can generate highly targeted code, as shown in Figure 9-7.

Figure 9-7. MDA can be a good basis for the "SOA meta-bus,"
providing platform-independent service definition and model

transformations that support a wide range of middleware and SOA
infrastructure platforms.

[View full size image]

In the light of our discussion on "top-down" versus "bottom-up" code generation (refer to
the previous section), technology-independent service definitions would be usually defined
in a top-down fashion as a PIM, representing only business functionality. MDA tools can
then be used to generate platform specific service interfaces, e.g. in CORBA IDL or WSDL.

In many cases, MDA tools will be used in combination with existing code generators, e.g.
CORBA IDL compilers or WSDL compilers. However, most MDA tools go beyond the
generation of service stubs by supporting the generation of prototypical service
implementations, GUI descriptors, SQL code, etc.

While MDA is a very powerful concept, it is clearly not a "silver bullet": Like any other
technology, MDA depends on a specific set of standards and tools. However, with its focus
on model transformation, MDA in combination with SOA could help especially those
enterprises which are suffering particularly badly from application and middleware
heterogeneity.

9.1.3. EXECUTION CONTAINERS

The execution container is the runtime environment for the service implementation. Most
runtime environments for enterprise software also provide appropriate containers for
services, mainly because they can provide guidanceand sometimes solutionswhen catering
for the technical challenges that we describe in this chapter.

Although the formal definition of container was coined with the emergence of the
Enterprise Java Beans (EJB) standard, many older application platforms provide similar
features for efficient, secure, and transactional execution of service requests. These include
transaction monitors such as CICS, distributed object systems such as CORBA, Web
application servers (Servlets), and database management systems (stored procedures).
The following summarizes the generic feature set of an execution container:

Dispatching and servicing. There are different possibilities for routing an incoming
service call to the implementation of the corresponding service operation. The necessary
dispatcher could either be part of the service implementation or an integrated part of the
container.

Transaction management. An execution container should include built-in facilities for the
management of transactions. For example, data-centric services needing access to
databases and files under transaction control require these facilities. Process-centric
services that invoke a variety of other services while executing one instance of a business
process also need transaction management.

Security. The security requirements for execution containers are similar to those for many
other server environments. An execution container must provide facilities for
authentication, authorization, and transport encryption.

Logging. Contrary to many monolithic architectures with applications that run completely
under the control of one single transaction monitor and use one database, an SOA must
cope with various issues of vertical and horizontal distribution and decoupling. Logging is a
particular measure to address many of these issues. The execution container must provide
facilities to keep track of all service invocations. For the sake of performance or due to legal
considerations, one must be able to configure the scope of the logging. At a minimum, it
must be possible to switch on and off the logging of a service invocation's payload.
Furthermore, the execution container must be able to provide facilities for the retrieval and
consolidation of log entries.

Billing. The development, maintenance, and operation of a service are not free. Therefore,
it is a valid approach to charge for the usage of a service. This can be performed both
within an enterprise (cross-departmental billing) and between different organizations. In
order to do billing, the execution container must provide usage metrics and it must meet
Service Level Agreements (SLAs). Furthermore, you will need user accounts that keep track
of accumulated costs and that allow service usage only under defined commercial
conditions.

Systems management functionality. It is often necessary to run a service in a highly
automated operation environment. In such an environment, the service must provide
facilities to cooperate with systems management tools. At a minimum, it must provide
functionality for starting and stopping services. Furthermore, it is beneficial to have
statistical functions that connect to these systems management tools and report errors,
average (or minimum or maximum) processing times, resource consumption, currently
active operations, uptime, and many more details. In this context, it is worth mentioning
that many traditional runtime environments such as transaction monitors running on a
mainframe provide a certain subset of this functionality out-of-the-box. More sophisticated
systems management functionality could be easily added to the base operations. Both
development teams and operations are aware of systems management necessities and are
used to the associated issues. As a result, traditional environments are still a reasonable
choice for today's mission-critical applications.

Message transformation. Message transformation is a feature that you typically find in
an EAI or B2B scenario. Here, you might have a heterogeneous set of clients that
potentially use different formats to represent the payload of a service invocation, such as
different flavors of SOAP messages. In such a case, it is very convenient if the execution
container provides preprocessing facilities that transform all incoming calls to a single
unified format.

In Sections 9.2 to 9.4, we discuss some of the aforementioned aspects in more detail.

9.1.3.1 Cross-Container Integration

Individual execution containers often provide a rich out-of-the-box functionality that makes
the development, deployment, and management of individual services reasonably
straightforward. However, almost all enterprises suffer from "middleware overload." They
must deal not only with a multitude of incompatible applications but also with the
existence of many different application platforms and communication middleware systems.
In most enterprises, many different types of execution containers can be found, ranging
from modern .NET, Java Servlets, and EJB containers to mainframe transaction managers
such as CICS and IMS.

The key challenge of an enterprise SOA is to define an architecture that enables
applications to use different services independently of their container. Although simple
service interoperability can be achieved relatively easily through interoperable messaging
protocols such as IIOP or SOAP, the challenge is to connect services that reside in different
containers beyond simple request/response interoperability, including security and
transactionality. Figure 9-8 provides an example of a customer and flight booking system
deployed across multiple service platforms.

Figure 9-8. In a system where services are implemented on
incompatible execution containers, one must introduce a horizontal

infrastructure layer that manages technical cross-container
integration of services. If this cannot be deployed as a technology

layer, it is necessary to incorporate appropriate design principles and
procedures to each container in order to address the related

problems.
[View full size image]

In some cases, the introduction of an external horizontal infrastructure layer can automate
some of the tasks of integration services across container boundaries at the technical level.
However, this is often impossible, and more flexible solutions must be incorporated into
the system.

In particular, the problem of data and process integrity across container boundaries is a
difficult one. Although technologies such as X/Open-based transaction monitors can enable
transaction processing across multiple distributed and heterogeneous systems, these
technologies are often impracticable due to the many technical and organizational
limitations (see Chapter 8, "Managing Process Integrity").

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.2. Logging and Auditing
In this book, we provide technical and organizational tools to build a system that is not
prone to failures. Yet it is of course virtually impossible to rule out all failures. A lot of the
measures described elsewhere in this book are potentially costly, and for this reason, they
are often omitted in practice. For example, in real-world situations, the budgets for
infrastructure investments to set up a failsafe database cluster or a redundant network
setup simply might not be approved. Hence, you sometimes must rely on measures such
as logging. Chapter 8, "Managing Process Integrity," has already given an in-depth
discussion on process integrity for which logging is a crucial building block.

Another reason for operation disruption might be that one of the services that the
application depends on must undergo unplanned maintenance. Consider an airline booking
application thatamong othersrelies on a pricing service to determine the price for specific
flights on a given date. Consider a serious bug within the module that performs flight price
calculation. No company wants something like this to happenespecially if the calculated
prices are far too lowand the corresponding service will often be shut down immediately to
prevent further damage.

The bottom line is that even if you have planned for the system to handle a lot of error
conditions automatically, unplanned and unrecoverable errors can still happen. We will call
such errors failures in the remainder of the chapter. As depicted in Figure 9-9, failures
require activities at different levels, including: user interaction, logging, and systems
management.

Figure 9-9. An error must be reported to the user, to a log file or
database, and to a systems management system.

When coping with failures, the concepts and techniques discussed in this chapter are not
only relevant to SOAs. Most of them are simply good coding practices or design patterns.
However, in a distributed and loosely coupled architecture, they are of much greater
importance than in a standalone monolithic application. The distributed nature of the
architecture and the fact that the source code or core dumps of the actual services are not
available for debugging make explicit failure-handling measures essential.

In case of such failures, it is usually necessary to perform certain manual activities to
return things to normal. In lucky circumstances, this might be as easy as resetting a power
switch. On the other hand, it might result in a number of employees browsing millions of
rows in multiple database tables. It is not hard to see that resolving problems is a lot
easier if we know where and when the error occurred and which users were involved in it.
It is, therefore, mandatory that every SOA has a reliable logging and auditing
infrastructure. Although logging and auditing are quite similar from a technical point of
view, they differ considerably at the requirements level.

Usually, runtime output from a system is mapped to different log levels. These levels
areamong other thingsused to distinguish auditing, logging, tracing, and debugging
output. They are usually identified by a number of a text warnings, such as "DEBUG,"
"TRACE," "INFO," "WARN," "ERROR," "AUDIT," etc.

Auditing is normally put into place to satisfy some legal requirements, such as
documenting that a credit card was actually charged because the client ordered flight
tickets, or to document that the ticket actually did get printed and that it was sent to the
address given by the client.

Auditing creates a new subsystem that by itself impacts system operation. When normal
logging fails, for example, if the log file or disk partition is full, you can usually carry on
merely by halting the logging process. However, if auditing itself fails, it must be
considered a failure, and the system must stop its operation. After all, continuing to run
without auditing in place might violate some legal obligation, and no company wants that
to happen.

Tracing is usually disabled while a system is in production and is only enabled in case of a
major problem because it is often so detailed that it significantly degrades system
performance. Tracing is usually switched on explicitly to track down a particular error. In
case of intermittent errors, this will of course result in a degradation of system components
for a potentially lengthy interval until the error can be identified.

Finally, debugging consists of statements that are only significant to application
developers. Therefore, debugging code is often excluded from the production code
altogether. In the rest of this chapter, we will focus on logging and auditing. Both are
treated in a largely similar fashion.

9.2.1. ERROR REPORTING

One of the most common issues with error reporting is that failures can go unnoticed.
Unfortunately, it is all too easy to build a system where failures are not reliably detected. A
common mistake is when a program catches all exceptions during development and
discards them silently. As the project moves onusually toward an overly optimistic
deadlinedevelopers move on to their next tasks, and the RAS
(Reliability/Availability/Serviceability) features are never completed. Of course, cases like
this should be avoided in any kind of software development by employing proper coding
standards. In an SOA, they become an even greater problem because of the loosely
coupled nature of the application.

Similarly, an error that is logged but not reported to the customer can cause a lot of
confusion. For example, if the airline ticket printing service is temporarily unavailable, an
error might not be reported to the customer. Instead, it might be discovered and fixed
during a routine log screening at the end of the week. By that point, the customer is likely
to have called in and opened a customer service case, causing expenses that might
otherwise have been avoided.

It is crucial for the business owners to clearly define both to developers and software
designers what their requirements are for logging, auditing, and reporting. Likewise, it is
mandatory to report an error each and every time it occurs. When using distributed
services, this can be achieved using the technologies of the underlying platform. For
example, when using SOAP, you can utilize the SOAP error mechanism. Similarly, if you are
using a distributed object technology such as EJB, you can use remote exceptions to report
an error.

9.2.2. DISTRIBUTED LOGGING

Using a framework of potentially distributed services does little to make logging easier. In
fact, using distributed services for logging is rarely appropriate. Usually, the requirements
for logging are that it must be both reliable and lightweight.

Additionally, it should be easy to use in order to encourage programmers to log whenever
they think that there is something worth logging. Given these requirements, it is
astonishing how often one comes across a central logging service. Granted, the idea to set
up logging as a service in a distributed environment is very tempting, but it is easy to see
that such an approach is not lightweight by thinking in terms of the network load and
latency involved. If logging is implemented using object-oriented technologies, the cost of
marshalling and unmarshalling log record objects adds to this overhead. It is also not
reliable because many things can go wrong when storing the individual log records. This
starts with network failure and ends with storing the actual log records in a file or database
table. Finally, it is out of the question to use distributed transactions to make entries in a
log facility because this is probably as complex a process as one could encounter.

Log Locally but View Globally

Local logging is essential due to the need for a logging facility to be lightweight
and reliable. Global viewing of logs is required for the analysis of errors in
distributed processes.

To ensure that logging is both reliable and lightweight, the best approach is to log locally
and consolidate the logs as illustrated in Figure 9-10. Whether log data is written to a file
or database does not really matter, nor does the format of the log records itself. What
matters, however, is that each and every log entry carries some common information to
enable log consolidation. This information includes the time-stamp, the origin of the log
(method or procedure), and the name of the user who made the call (if legally possible).
Additionally, each service call should include a unique token that can be used during log
file consolidation to build a distributed stack trace.

Figure 9-10. Structure of a distributed logging environment. The
individual services write to dedicated logs of arbitrary format that are

consolidated to form a common storage. The log services that are
available at the various locations should ideally have identical

interfaces. An audit trail service can be used to query the consolidated
storage and request consolidation from the various log services.

[View full size image]

Session and Transaction Tokens

A good service-oriented logging facility needs to ensure there are tokens such as
session-tokens and transaction-tokens, which can be used to consolidate the log
files as they are constructed and for searching after an exceptional event.

Consider the example of purchasing an airline ticket, shown in Figure 9-11. The airline
ticket service itself logs to an XML file. When called, it generates a unique request ID that
is logged with all entries to that file and passed to other necessary services. The billing
service logs to an RDBMS, while the flight reservation uses a record-based log file. The
three log sources are then all accessible using a log service for that particular location.
Ticketing takes place at a different location. It logs using a line-oriented file, again using
the unique request ID. The contents of the logs for that location are also made available
using a log service. If engineered properly, the interfaces of the two log services should be
identical. The log services store the consolidated log information in a centralized data store.
This operation does not need to be overly reliable because it is intrinsically idempotent. The
common data store can then be queried using an audit trail service.

Figure 9-11. The airline ticket service uses basic services distributed
over two locations. Logging is performed by the individual services

using RDBMS, XML-, Record-Based-, and line-oriented files. The local
log services consolidate the local data on request or periodically into
a common storage. A common audit trail service presents an overall

picture of the application.
[View full size image]

9.2.3. LOGGING AND TRANSACTION BOUNDARIES

As we mentioned previously, logging is a lightweight activity, and as such, log data should
not be written to the same database as the transaction being logged. The reason is
obvious: In case of an error, not only will transactions get rolled back, but the logs will also
be rolled back. It can be very hard to determine the cause and precise circumstances of
the failure, especially when using an environment that has sophisticated
container-provided transaction management. For example, when using an EJB container,
the user must be aware of the restrictions imposed. If, for some reason, it is infeasible to
use the logging facilities provided, logging to a file usually does the trick. If you need to
log to a resource, such as a transaction message queue or an RDBMS, it is necessary to
manage all resources manually.

Never Log Under the Control of a Transaction Monitor

Never log under the control of a transaction monitor. Ensure that each
completed call to a logging system yields an entry in the appropriate log data
store. Prevent rollback mechanisms of a transaction monitor from extinguishing
log entries.

Logging to a file can also show some unwanted behaviour. File systems such as Linux ext3
or NTFS use a write buffer. This means that data is not written persistently until the
operating system synchronizes the file system. This might require that the file system be
synchronized manually after each call.

In the case where there are multiple explicit updates using a transactional resource,
logging should be performed before and after each of these activities, as shown in Figure
9-12 when making a flight reservation with two flight legs. This situation occurs commonly
when EJB Entity Beans are used as the persistence mechanism of the service.

Figure 9-12. Transaction log.
[View full size image]

Naturally, one of the occasions where logging is mandatory is before calling a remote
service and after that call returns. This makes sense not only because making a remote call
is more error-prone, but also because an error can often be fixed by running the remaining
services in the call chain again. Consider the example in Figure 9-13, where the billing and
flight reservation succeeds but the ticketing call never returns. After we determine that no
ticket was printed, all we must do is rerun the ticketing service.

Figure 9-13. Call chain.

9.2.4. LOGGING FRAMEWORKS AND CONFIGURATION

A common activity is to build the consolidation part of the system and provide services for
remote retrieval of log entries. However, a normal project should not be concerned with
building the part of the system that writes the actual log records in the first place.
Normally, the execution and development environment will provide some form of logging
services. Many containers provide logging in their own right; EJB or CORBA containers
often include logging consolidation facilities. A development environment might be able to
weave logging into the source code based on well-defined rules. Furthermore, a runtime
environment might provide a high degree of logging in any case, based on automatic
interception of certain activities, such as making a HTTP request or obtaining a database
connection from a pool.

Finally, there are software products and libraries available for the sole purpose of logging.
The Apache log4j framework is probably the most prominent example in the Java
programming language. Since the arrival of Java 1.4, the JDK itself contains similar
libraries for logging [GS2003].

That being said, there is no way to avoid the fact that logging is ultimately the
programmer's responsibility. Too much business logic is coded by hand instead of being
automatically generated. The input and output for this business logic usually provides the
most valuable insight into the cause of an error. With the advent of Model Driven
Architecture (MDA) and highly sophisticated code generation, this might be automated in
the future. Of course, it is very unlikely that even generated code is completely bug-free.
Thus, an important part of code generation is sensibly placed log and audit statements.

Traditional midrange and mainframe applications usually provide a robust built-in logging
infrastructure. For example, IBM's CICS offers logging using the CICS log manager. This
infrastructure is used for all logging purposes, from basic user-level logs up to CICS
transaction logging and recovery. This logging facility connects to the system-level MVS log
streams. One of its most powerful features besides its robustness is its ability to
consolidate log messages from different physical and logical machines that use IBM's
Sysplex technology. Furthermore, logs can be automatically placed into different archive
stages so that accessing and searching the most recent logs becomes easy, while at the
same time, the full historical information is preserved.

Logging should ideally be configurable in a fine-grained manner. For example, frameworks
such as log4j enable users to define how to handle a particular log event based on its
origin and severity. Usually, this is used to log into different target files based on the
origin, to turn logging off for low severity, or to turn logging off completely for a particular
origin. This is sensible from a performance perspective, but it can have the opposite effect
in certain scenarios. Assume that the flight reservation service has the nasty behavior
thatjust sometimesflight legs are not reserved properly. Fortunately, the programmers
have included a high degree of logging in their code. Given the data, it is quite easy to
determine why this happens. The flight reservation service is currently configured to log
only events of severity "error" and above, but information of the level "trace" is needed to
really figure out what is happening. Unfortunately, the system does not allow for runtime
configuration. This means that the entire flight reservation service must be taken offline,
the configuration must be changed, and then the system must be brought back online.
This can cause an unwanted disruption of service because (a) it's the holiday season and
(b) it's 5 P.M., and customersa lot of customersjust want to use this system.

Runtime Configuration

If there is a requirement for fine-grained log configuration, take care to ensure
that the settings can be changed at runtime. Otherwise, everything should be
logged.

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.3. Availability and Scalability
It is mandatory for any enterprise architecture to provide functionality in the way it has
been commissioned to do so. In this context, we consider a system as providing availability
if it is operational for 100% of planned uptime. In other words, we consider a system to be
100% available if it prevents any unplanned downtime. Note that we do not include
planned downtime in our concept of availability. For example, if an application becomes
unavailable because a database is taken offline for backup every night, it does not reduce
the availability of the application. Instead, it limits the service level that the application
supports.

Scalability in the context of this book means that an enterprise architecture provides some
way to increase its capacity beyond initial planning. Capacity designates the work a system
can perform in a given amount of time, commonly measured in transactions per second
(TPS). Other measures of capacity are the number of concurrent users a system can
support and the amount of storage space it provides. Ideally, scalability should provide a
linear solution, meaning that if the capacity of the system is doubled, the resources
availablememory, CPUs, network and management overheadshould at most need to be
doubled. In practice, systems can scale linearly only to a given point. For most practical
purposes, scalability means that a clean and defined path exists to increase the capacity of
a system by a requested amount. In general, scalability is only considered up to a certain
boundary. For example, a requirement might be that an application must be scalable from
an initial load of 100 to 10,000 users.

One of the most common confusions that arise surrounding issues of scalability and
availability is that they are often not rigorously defined or that they are defined based on
insufficient information. The so-called Service Level Agreement (SLA) lies at the heart of
this matter. An SLA typically defines a set of performance figures that are an integral part
of the contract between one organization that provides an IT service and another that
consumes that service.

The most common performance figure is the guaranteed operation time. The operation
time (commonly referred to as uptime) states the time that the system must be available,
along with an acceptable amount of unplanned downtime. The SLA also states the capacity
of the system. This includes storage capacity, number of concurrent users, and TPS. Often,
an SLA also states the response times that are acceptable for a certain percentage of
requests.

Care must be taken when the requirements for any IT system are defined. Further care
should be taken for any system that relies on other systems to function properly. Far too
many so-called "SLAs" in the industry only state the wishful thinking of the people who
originally "defined" them during a sales pitch. As a consequence, they also state
requirements that far exceed what the systems actually needs to deliver in the worst-case
scenario. For example, it is unacceptable to require an airline booking system to support a
number of concurrent requests that is equal to all airline seats available for the entire year.
Even if the booking system could fulfill this requirement, there would be no benefit for the
business. Therefore, such requirements must be based on known values, such as the
current number of transactions and the actual number of users that are concurrently
connected to the system, where possible. If such numbers are not available, extrapolation
from currently known values is required. It is both valid and commonplace to add a safety
margin, but you must take into consideration that the requirements for the system's
availability ultimately impacts engineering efforts. At the same time, it is valid to question
whether any business process needs to operate unaffected in the cases of nuclear war or an
alien invasion. Finally, you should be wary of the concept of guaranteed response times for
as yet unspecified and unimplemented business functionality. It is fairly easy to plan for
capacity and availability; it is almost impossible to plan for an unknown computational
algorithm.

By now, it should be clear that availability and scalability come at a price. A number of
applications exist in which you should be prepared to spend a large amount of money to
guarantee availability. Consider air traffic control systems or a control system for a nuclear
power plant. In these cases, not only the functioning of the economy but also human lives
depend on these systems remaining permanently operational. In other cases, the systems
that are affected by your IT system might be very expensive or very hard to replace, such
as a multi-billion dollar spacecraft whose IT systems enter unplanned downtime just as it
enters the atmosphere of one of the moons of Jupiter. However, for a large number of
systems, some amount of unplanned downtime is inconvenient but acceptable. One
example is an online banking system where most users might not even notice a downtime
of a couple of hours every month. A second example is an airline check-in system.
Although downtime is very inconvenient and large queues form in front of the check-in
desk, fallback procedures exist that allow for a manual check-in process.

The stronger the requirements, the higher the price tag. Building an extremely fail-proof
system that is scalable from initial hardware setup to software development to operating
procedures is very expensive.

On a different note, you must never forget that the overall performance of the system is
ultimately limited by the weakest link in the technology chain. This has an important effect
on any integration or service-enabling effort because the impact that legacy systems and
databases have on overall system performance is regularly underestimated. In principle,
the service layer scales linearly to support unlimited capacity, regardless of the underlying
technology. However, the supporting systems stop scaling at some point, such as when the
number of connections a database server can support is exceeded, when the storage area
is full, or when transactions occurring at a certain rate create concurrency problems at the
database level. Often, this is not a technical but an administrative problem: hardware must
be bought, database configurations must be changed, host computing power must be
ordered, and so on. Because these things typically take time to progress to the proper
channels in an enterprise's IT operation, it is important to stress test the entire application
stack as soon as possible in the project to allow enough time for uncovering any backend
scalability issues.

Stress Test Early

Often, simple measures on IT system level will improve performance and
scalability radically. However, time is required to implement these changes. To
buy yourself this crucial time, do not be afraid of using stress testing early in the
development process.

Finally, note that session state should be placed in the application frontend. If the
application frontend is not suitable, you should create lean process-centric services, which
should be carefully separated from non-conversational services.

9.3.1. SCALABILITY AND AVAILABILITY USING WEB SERVICES

Web services are generally built on one of the widely available technologies to deliver
dynamic Web pages, most notably Microsoft .NET and J2EE. In principle, these
technologies provide easy scalability. You can use a load balancer to forward the requests
to any number of framework instances or containers that are configured identically. If
needed, you can add additional hardware to host more instances of the container in order
to increase system capacity until the network is saturated. Most off-the-shelf load
balancers provide the concept of sticky sessions, where a request that originates from a
certain IP address is always forwarded to the same container. This will enable the container
to preserve conversational state with the client. As we discussed in Chapter 8, limited
resources such as open database connections or transaction contexts should never be part
of this conversational state. Newer load balancers even analyze the request for information
about the server on which the session relies instead of using only the IP address. In
general, failure of the container will result in the loss of the conversational state. Strictly
speaking, from the preceding definition, this does not limit availabilitythe load balancer will
notice that a system has come down and will forward the request to another machine. It
might nevertheless prevent the uninterrupted operation of the system. Again, this presents
additional motivation to make service interfaces stateless and idempotent wherever
possible. Most frameworks support some notion of preserving session state. The actual
implementations vary widely: state might be stored in a database or in a shared file
system, or it might be replicated to all members of a cluster using multicast or to a single
dedicated server. Similarly, session state replication might or might not be transactional.
In any case, preserving session state creates a noticeable overhead. For example, state
that is convenient to store but that is easily re-created should not be replicated. You might
even consider the complete abandonment of conversational session state, even if this
requires its re-creation with every service invocation. The simplicity and scalability
obtained can easily outweigh the extra costs for hardware.

However, the best solution is to store the session state in the application frontend. This
makes most of the challenges of maintaining server-side state irrelevant.

As an example, consider checking in for a flight using a self-service terminal. Consider the
stage of the check-in service where the seat is assigned (see Figure 9-14). The call
signature can easily be crafted to be both idempotent and stateless. In this case, no
session replication is required. If the first try to assign a seat fails because the system has
gone down, the terminal retries the call. The load balancer has noticed that it has lost
connection to the first instance of the service and uses another instance to retry the call.
This call subsequently returns the required information to print the boarding card.

Figure 9-14. Failover using a hardware load balancer and a service
that uses no conversational state.

Interoperability with Off-the-Shelf Load Balancers

Always aim for a coarse-grained service interface. Use idempotent methods
wherever possible. These measures will provide optimal interoperability with
off-the-shelf load-balancing routers.

9.3.2. SCALABILITY AND AVAILABILITY USING EJBS

Creating scalable applications using EJBs is fairly simple because most EJB servers support
clustering. This enables an administrator to add additional server instances and hardware
until the capacity requirement is reached. Usually, the clients' EJB home interface
implementation makes a decision based on certain algorithms as to where to create the
required EJB. In case of a stateless session bean, the remote stub itself might load balance
on a call-by-call basis. Typical algorithms include random, load-based, and round robin.
Some EJB containers also facilitate the provision of custom algorithms.

Most EJB containers will bind a specified remote client to a single server instance to limit
the amount of transaction coordination needed if multiple EJBs take part in the same
transaction. If they do not, you can easily emulate this behavior by using a façade pattern
to push down the transaction boundary.

Regarding availability, the same concepts discussed in the previous section on Web
services hold true. Stateless session bean stubs will detect the failure of a server and try to
connect to a different server. Stateless session beans should be used wherever possible to
avoid conversational state. If conversational state is a firm requirement, some EJB
containers provide data replication and failover for stateful session beans. Likewise, entity
beans that are not part of a transaction can be reloaded from a different server. Because
the latter is quite specialized behavior, and because it is also highly vendor-specific, it is
again best to try to maintain as little conversational state as possible. Some EJB containers
also support the idea of an idempotent method in a bean. This is a powerful concept
because it enables the stub to transparently re-create a call if the original call fails in flight.
These features of EJB containers often lead to performance problems in a tightly coupled
environment with a fine-grained object model. However, they are very useful in the face of
the scalability and availability issues of an SOA.

Avoid Stateful Beans' Fine-Grained Interaction Patterns

Using stateless session beans with coarse-grained interfaces will enable you to
make effective use of your application server cluster. Avoid fine-grained object
interaction patterns. The striking simplicity of this concept will improve not only
the availability and scalability of the system but also its robustness and
maintenance-friendliness.

As an example, consider booking an airline ticket, as illustrated in Figure 9-15. An
examination of that part of the booking process contains the following three steps:

1.

A reservation is entered into the system.

2.

The customer's credit card is charged.

3.

The reservation is marked paid and closed.

Figure 9-15. A stateful booking service that calls the reservation and
the pay-ment service. The reservation number, credit card data, and

state of payment are replicated in order to support failover.

If the client notices that the call fails, it can retry the call using a replicated instance of the
booking service. The key data to be replicated is the primary key of the reservation record
and the credit card data, along with the state of the payment. If a reservation key exists
and the state of payment is "charged," then the implementation of the booking service can
continue with closing the reservation. If there is no primary key for the reservation, it can
retry the whole process. If the state of payment is "not attempted" and a reservation
primary key exists, it continues charging the credit card. Note that due to the transaction
boundaries, a state might arise that cannot be handled automaticallyif the payment fails in
flight and the payment state in the replicated data is attempted. In this case, the
implementation can run checks using service methods of the payment service to determine
the outcome of the attempted call.

9.3.3. SCALABILITY AND AVAILABILITY USING CORBA

With CORBA, most of the concepts discussed in the previous section hold true. The CORBA
specification defines requirements for "fault-tolerant CORBA." Among other things, this
specification is concerned with detecting communication faults, providing transparent
failover, and replicating the object state of distributed object instances. Load balancing
within CORBA is usually performed by the individual vendor implementations using
low-level functions of the CORBA GIOP (General Inter-ORB Protocol).

Because CORBA fault tolerance is a relatively new specification, various vendor-specific
implementations for availability and object state replication exist.

9.3.4. SCALABILITY AND AVAILABILITY USING CICS

Even though it might seem old-fashioned, IBM's Customer Information Control System
(CICS) remains widespread for mission-critical services. Basically, CICS is a transaction
server that provides very efficient facilities for loading, initializing, and executing
programs.

While CICS servers usually run on mainframe or midrange computers, a variety of tools is
available to connect to a CICS server. For example, the CICS Transaction Gateway (CTG)
enables Java programs to act as a CICS client using the Java Connector Architecture (JCA).
Other programming languages, such as COBOL, C++, and Visual Basic, can use the CICS
universal client to access the CICS server. Connectivity to IBM's messaging product,
MQSeries, is also available. In this way, any client of an MQSeries server can make use of
existing CICS programs. Finally, CICS programs can be directly exposed as SOAP Web
services using SOAP for CICS.

To ensure a seamless operation with existing CICS programs, any CICS-based service
should ensure that no conversational state is held. One transaction should map to exactly
one service call. CICS programs can run for an arbitrarily long time interval. If the service
implementation breaks while the CICS call is in flight, it can be very hard to determine the
result of the transaction. Therefore, extra care must be taken to ensure that CICS
programs used in services are small and that they execute quickly.

Scalability and availability of CICS itself is provided by IBM's CICSPlex and SYSPlex
technologies.

CICS can even participate in distributed transactions, for example using JCA. However, as
discussed in Chapter 8, distributed transactions must be handled with care. Because CICS
programs usually execute on systems with very high load and transaction density, using
distributed transactions with CICS is often inefficient and might have a significant impact
on other CICS jobs accessing shared resources.

9.3.5. SCALABILITY AND AVAILABILITY OF WRAPPED LEGACY
APPLICATIONS

It is often desirable to use an existing terminal-based legacy application within a service.
Just as often, it is not possible to make changes to the existing application. In these cases,
one of the most popular and effective ways of using legacy applications in newly developed
applications is screen scraping. The character stream that is used to build the terminal user
screen, such as on a VT100 terminal, is analyzed. Effectively, the application mimics a
VT100 terminal client.

This approach has several benefits. It is a fairly cheap and straightforward way to include
some of the existing functionality into a service. Specifically, it is a low-impact solution
because no changes to the original application are required. There are also downsides to
this approach, mainly in relation to scalability and availability. First, a lot of existing VT100
systems will have daily maintenance windowsusually at nightwhen the application and thus
the service are not available. This must be incorporated into the relevant SLAs for the
service. Second, any changes to the application terminal screen require maintenance work
in the service application. Furthermore, granularity of a typical stateless service call can
easily span multiple terminal screens. This will lead to rather high latency when invoking
such a service. On the other hand, a design that performs multiple fine-grained service
calls requires a stateful service, which is generally not advisable, particularly because such
systems normally work on a pooled resource, in this case, terminal connections.
Furthermore, the service can only scale to the amount of transactions and sessions that are
supported by the legacy application.

A business that aims for this type of reuse must be prepared to face the consequences of
this decision. It will usually save a large amount of money, but this comes at the cost of
somewhat limited scalability and robustness with increased maintenance [TDM2000].

9.3.6. SCALABILITY AND AVAILABILITY IN A HETEROGENEOUS SOA

Ultimately, services in most SOAs that run on different platforms are likely to be
integrated. For example, the flight booking EJB might call a SOAP Web service to charge
the customer's credit card. Because many SOA initiatives start out providing a whole new
enterprise IT infrastructure, it is easy to lose sight of this fact. However, if properly
deployed, an SOA supports the concept of heterogeneous service platforms working
together. The individual services are only loosely coupled and share no common transaction
contexts. Therefore, if all individual services are designed to be available and scalable, the
overall system will be available and scalable in principle.

However, the situation is not quite so simple. For example, increasing scalability on the top
of the service stack might not increase overall scalability of the system because services
down the application stack might be overloaded. Thus, changing an SLA for a frontend
service usually requires changing SLAs for backend services as well. As an analogy,
imagine a call center that relies on a single database to operate at its maximum user load.
Simply adding more agent seats and phone lines to the call center does not increase its
capacity unless the database system is also upgraded.

The uptime of services that run within a heterogeneous infrastructure does not amount to
the lowest uptime of the service chain. If three services provide an uptime of 98%, the
resulting uptime is the product of the individual uptimes:

UT = 98% x 98% x 98% = 94.1%

However, the weakest link in the service chain still has the highest impact on availability in
addition to scalability. Therefore, project management must first focus on bringing the
weakest technology in line with the SLA's requirements.

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.4. Securing SOAs
In SOAs, security is certainly of primary concern and should have solid foundations in the
infrastructure. Before you take any technical steps to implement a specific security
structure, you should capture the security requirements for all relevant pieces of software
during a risk analysis. Based on this analysis, you build the software architecture to
incorporate the defined security requirements. Performing a risk analysis is beyond the
scope of this book, but details on the subject can be found in [PT2001]. Instead, based on
a number of implementation projects carried out by the authors, we discuss here some
technical issues that you must address when designing a security infrastructure in a
distributed software architecture.

The main issues of a basic security infrastructure are authentication, authorization, and
confidentiality. The focus broadens where the infrastructure is exposed on the outside of
some well-controlled environment, such as a specific department or geographic location. In
these situations, concerns such as non-repudiation, message integrity, and legally binding
identity assertion become increasingly important [GS1997].

In this section, we discuss these principles and provide examples of how they relate to
platforms that are commonly used to create SOAs. The guiding principle is that we want to
use security as a tool to foster and encourage the use of our enterprise architecture, rather
than security simply being a means to prevent incidents.

9.4.1. AUTHENTICATION

Authentication means that a service caller is using a mechanism to prove its identity to the
called resource. The caller must provide credentials such as a username and password or a
digital certificate. Often, security requirements for authentication include an implicit
authorization requirement. The typical scenario is that callers must authenticate
themselves before being allowed to use the environment.

Three levels of authentication can be readily distinguished. First, it is possible for the caller
to authenticate against the application frontend, second, authentication against the SOA
framework is possible, and finally, authentication against a single service is also a possible
option. Figure 9-16 illustrates authentication at different levels of the application.

Figure 9-16. Authentication against different levels of the
infrastructure. In this case, the Web site supports authentication.

Authentication against the infrastructure is also supported. Individual
services, such as the customer service, might also require or support

authentication.
[View full size image]

Authentication against the application frontend is generally straightforward and quickly
deployed. Often, it will be a vital business requirement to protect access to the application
itself. Authentication against individual services is often desirable in order to limit access to
these services and to create a clean audit path within service invocations. However, when
authentication becomes part of each individual service, a significant amount of code
cluttering results. If the authentication mechanism and storage change, a significant
amount of reengineering might be necessary to propagate these changes into the various
services. In addition, different services probably rely on different types of storage and
authentication mechanisms in the first place.

Therefore, it is generally better to insist that the user be authenticated against the
infrastructure rather than against individual services. It is a prerequisite for SOA-wide
authorization and identity assertion, as we discussed in the following. However, some very
important advantages are available. For example, having a common user for subsequent
operations in an SOA makes monitoring the environment a lot easier. Common types of
attackssuch as password guessing or denial of service attackscan be prevented or at least
treated in a standard way throughout the SOA. In addition, maintenance benefits greatly
because changes in the underlying authentication mechanism can be performed across the
board rather than against individual application frontends or services.

Authenticate Against the SOA

Authentication against the SOA facilitates cleaner and easier-to-maintain code
with a comparably small overhead.

Authentication against the SOA is usually based upon the framework that is used to build
the SOA infrastructure or a common framework on top of the basic infrastructurefor
example, a J2EE-compliant server that can be extended using a pluggable authentication
provider.

An authentication framework usually consists of at least an authenticator and a context.
Technically, a context is often associated with conversational state in a session (see
Chapter 8). The authenticator is a software component that checks a user's credentials,
such as a username and password or a digital certificate. The infrastructure then creates a
context that is accessible from the business domain in order to obtain the authenticated
user, commonly known as the principal. The predominant middleware frameworks all
support authentication mechanisms that can be leveraged in an SOA and that can be
readily extended to satisfy individual enterprise needs. For example, a company might
create an authenticator within a newly created SOA that uses usernames and passwords
from an existing mainframe application. The J2EE environment provides JAAS (Java
authentication and authorization service), a mechanism that describes the process of
authentication and authorization of client interactions.

One drawback of such specifications is that they tend to be at least partly proprietary.
Contexts that originate from different frameworks are usually incompatible. Even when
they support a common client API such as JAAS, their implementations can differ
significantly, and they might support different and incompatible extension mechanisms.

Such systems share the fact that the actual authentication process is fully transparent to
the individual service. A service might decide to check the current principal and thus reject
any operation, but it will not perform the actual login process. This isolates the service
implementation from changes in the authentication mechanism. For example, it is possible
to change authentication credentials from username/password to digital certificates
without the need to change the service implementation. In short, the service needs only to
know the context, not the authenticator.

If authentication against the SOA itself is not practicalperhaps because individual services
are engineered in a way that requires individual authentication, possibly using different
credentialssingle sign-on frameworks can be used to relax the problems of integration.
Typical single sign-on frameworkssuch as Netegrity Siteminder, Oblix NetPoint, and Citrix
Metaframeplug into the authentication hooks of the various software components used,
including middleware, Web servers, and mainframe applications. They provide a consistent
view of an authenticated principal within all these environments. The individual systems
mighton their ownrely on different authentication mechanisms that have their own storage
mechanisms and different credentials. A single sign-on framework can provide credential
mapping, providing the correct logon credentials for each invoked service or even backend
applications. Single sign-on is generally straightforward and transparent to implement for
programmers but needs a significant effort to introduce and maintain, especially when
credential mapping is involved. The general principle of a single sign-on framework is
illustrated in Figure 9-17. Note that most single sign-on products are not limited to simple
authentication and credential mapping; they usually offer mechanisms and storage for
authorization, too. Some frameworks even provide hooks to include biometric equipment
such as retina scanning or face recognition.

Figure 9-17. Principal of a single sign-on infrastructure. The user is
originally authenticated against a single application that interfaces to
the single sign-on framework. The framework provides login contexts

and tokens for the other applications and the application frontend.
[View full size image]

9.4.1.1 Authentication and Middleware

Authentication is fairly straightforward to implement when standard middleware such as
J2EE, CORBA, or .NET is used as the basic runtime foundation. Most of these frameworks
support some notion of authentication and caller identity.

Of course, the process of passing credentials might not be very secure. For example, it is
common practice to use unencrypted passwords when logging in to a remote EJB
container. Therefore, most distributed environments use the notion of a login session. Once
logged in, a session ID is passed between the participants. A frequently used technique for
session creation is the server-side session management in Web applications where HTTP
cookies or URL rewriting is used to maintain a session. Similar techniques apply to CORBA
and to authentication when obtaining a J2EE naming context.

There is also the notion of a login context in the Java Authentication and Authorization
Service (JAAS), now a standard in the J2EE application environment. This login context
provides callbacks that enable the called runtime environment to query the caller identity
using the callback:

...

import javax.security.auth.login.LoginContext;
...
 LoginContext loginContext = null;
 try {
 // Create LoginContext with username, password and
 // login url
 loginContext = new LoginContext("AirBookers",
 new AirBookersCallbackHandler(username, password, url));
 loginContext().login();
 } catch (Exception exc) {

 }

The callers then pass their identity on each subsequent invocation using an
implementation of the PrivilegedAction interface, in this case FlightBookingAction:

Subject subject = loginContext.getSubject();
FlightBookingAction flightAction = new FlightBooking-Action(url);
Security.runAs(subject, flightAction);
System.exit(0);

After the user has completed the interaction, the login context can be discarded by calling
loginContext.logout(). Note that the client interface for JAAS authentication is rather
complicated to handle. However, the actual service implementation is usually not
concerned with the details of the authentication mechanism. The implementation does not
directly call any of the available callbacks. Instead, the framework provides the current
caller within a context object, for example a SessionContext object in case of stateless and
stateful session EJBs. The caller principal can then be obtained from the session object:

...
Principal principal = ctx.getCallerPrincipal();
System.out.println("Called by "+principal.getName());
 ...

More sophisticated frameworks protect the login session by varying the session ID during
the session by issuing new session IDs or transaction numbers for every service invocation.

Creating authentication as part of an SOA is easy because of its limited impact on the
underlying applications. Remember that services are often created from existing
applications. Service enablement of such applications includes obtaining the caller principal
from the service infrastructure. Even if the application does not support anything similar to
a pluggable authentication module (PAM), it is fairly easy to create something similar in
almost every application. For example, if the legacy application has an existing data store
of users that it has a strict requirement to use, you can always create shadow users for
every principal in the infrastructure security store and map them to the existing users of
the legacy application.

Sometimes, you might see the concept of authentication as a service. Several frameworks
are available that provide identity services that require a certain amount of infrastructure
to be available. Although they are very powerful, there is also some resistance to adoption
of these frameworks. Deploying such systems in any large organization is generally a costly
exercise that must be based on a strategic decision made at the enterprise level. Even
then, individual project teams might show a certain resistance to using them because they
can create additional risks in projects in terms of software development skills or adherence
to their SLAs. In the end, using these frameworks can help an SOA effort as well as kill it.
Within the enterprise, the best option is to standardize on a single storage facility to access
enterprise-wide user data. Directory services such as LDAP servers provide a very efficient
means of storing and looking up such data.

When designing an authentication architecture from scratch, you should take care to make
it "pluggable." This makes it possible to change the implementation as well as the
underlying concept of an authentication mechanism, such as changing user stores or
switching from username/password authentication to certificate-based authentication.

9.4.1.2 Authentication and SOAP

Web services using SOAP are one of the most popular ways of building a Service-Oriented
Architecture. Although various techniques exist to secure a Web service environment [
H2003], SOAP provides only limited standardized support to satisfy the most basic
authentication needs.

SOAP 1.2 does not include a standard means of passing credentials, nor does it support the
concept of a caller context. Although both can be built easily using simple SOAP calls and
the SOAP header, this amounts to a proprietary approach. Any bindings into the application
to access the context and caller principal must be handcrafted.

There are specifications that offer solutions, most notably the WS-I Basic Security Profile
and SAML, a framework for exchanging authorization and authentication information. Both
define a means for authentication at the protocol level, but unfortunately, that is all they
do. No stable standard bindings are available into common programming languages such
as Java or C++ that can be leveraged in a project. Hand coding support that strictly
adheres to the specifications is by no means trivial. It is not so much a problem for service
implementation but for the client applications. For application developers, an SOA using
SOAP that does not adhere to some standard is likely to discredit the SOA initiative in the
first place. For the moment, the best compromise might well be to use only a small and
clearly constrained subset of the specifications that either are available or that can be
easily provided for the client environments of the SOA. Unfortunately, at the time of
writing, this process can result in a somewhat weak security model. The WS-I Security
Profile of the Web Services Interoperability Organization is likely to provide a more
consistent and thorough toolset for securing Web services in the future. It willamong other
thingssupport user authentication using various technologies.

The Security Assertion Markup Language (SAML) developed by OASIS can be used to
include authentication and authorization-related statements in addition to signed
messages into a SOAP document. In SAML, security statements are packaged into
assertions that are issued by assertion providers. There are three basic types of assertions:
authentication, attributes, and authorization. Similarly, there are three matching assertion
providers, although a single entity might well act as assertion provider for all three types.
An application can request a security assertion from an assertion provider, such as using
username and password. The assertion provider will return an (optionally signed) assertion
that always contains a timestamp, an assertion ID, and the subject of the assertion,
typically the application user. It can contain conditional information; for example, about
the length of time the assertion remains valid. The assertion or the assertion ID can be
included with other SOAP messages and can be automatically verified by the called
application. Single sign-on frameworks are obviously prime candidates to act as assertion
providers. The following is an example of an authentication assertion:

<saml:Assertion
 MajorVersion="1" MinorVersion="0"
 AssertionID="235CX364-7654-9876-5474-00A41E354H0D"
 Issuer="www.dolphinair.com"
 IssueInstant="2003-07-01T12:00:00+01:00">
 <saml:Conditions
 NotBefore="2001-07-01T12:00:00+01:00"
 NotAfter="2001-07-01T12:00:00+01:00"/>
 <saml:AuthenticationStatement
 AuthenticationMethod="password"
 AuthenticationInstant="2001-05-31T13:21:00-05:00">
 <saml:Subject>
 <saml:NameIdentifier>
 <SecurityDomain>"www.dolphinair.com"</SecurityDomain>
 <Name>"cn=Dirk,co=travel,ou=check-in"</Name>
 </saml:NameIdentifier>
 </saml:Subject>
 </saml:AuthenticationStatement>
</saml:Assertion>

9.4.2. AUTHORIZATION

Authorization is the mechanism used to grant a caller access to a specific resource. In the
simplest case, the caller might have the right to generally use a certain service, but more
often, the authorization decision is much more dynamic. For example, a user may alter
only certain data sets that belong to that particular user. Consider a flight planning
example, where cockpit crews may change their own flight plans but not the flight plans of
other flights. In authorization, no common abstraction principle lies at the core of the
authorization process, other than allowing or denying certain actions. As with
authentication, authorization can be performed at several levels, such as the application
frontends, the individual services, and the SOA infrastructure.

Authorization within the application frontends is one possibility. However, if used on its
own, this creates a severe security flaw because the underlying services would not offer
any authorization protection at all. The ease of implementation comes at the high price of
reduced security, as well as inconsistent authorization policies for the same business
activity due to the implementing application. Mirroring authorization decisions at the
application level might appear sensible in order to reduce round trips to a remote server,
easing the load on the remote server and the network while at same time providing a
better user experience. Consideration for the maintenance of the system is an issue during
the design phase.

As with authentication, the level for authorization might not necessarily be the SOA
infrastructure level. Instead, both the storage of the authorization data and the level of
dynamism in determining caller permissions determine the preferred location for an
authorization decision in an SOA.

The parameters used to determine the access decision can be complicated, and several
approaches can be identified. They mainly differ in the way in which the authorization
relevant information is stored and the way the authorization decision is determined:

• Store access data with the authorized resource. This is a modular approach
where the actual data that determines the authorization decision is stored with the
resource itself. As a common example, consider the file access rights in the Unix file
system. No central registry stores the read, write, and execute rights in addition to
the owner and group information for a file. This data is stored with the file itself. The
benefit of such an organization is that the authorization decision is very effective
from a performance viewpoint. An obvious disadvantage is that the introduction of a
new authorization policy can be a rather complicated exercise.

• Store access data centrally. This approach is for the example used in the access
control system of the Windows NT operating system family. Often, authorization
information is stored and accessed by means of access control lists (ACLs), whereby
a resource is identified by a certain path. Each resource features certain capabilities,
such as read, write, delete, or execute. Access to these resources can be either
granted or denied.

Both of these mechanisms basically define a static binding between a resource and either a
user or a mapping of users into a group or role. In a real-world scenario, this is rarely
sufficient. The following types of access decisions can be readily distinguished:

• Static authorization decision based on the current user or a static group
membership. This is easily determined by a resource external to the actual
business process providing access to the authorization data is guaranteed.

• Dynamic authorization decision based on a dynamic group membership
(role). This might be based on any factor external to the application but accessible
for the authorization framework. Popular examples are decisions that grant access
during a certain period of the day or based on the value of session variables that are
only temporarily available.

• Dynamic authorization based on an attribute of the authorized resource. This
is the type of decision that is often at the core of business processes. As an
example, consider the authorization of a credit card that is based on the card
number, expiration date, and customer address. Another example is the
authorization of a banking transaction that is based on the user entering a valid
transaction number from a list.

Often, business requires the auditing of authorization and authentication processes. This
particularly includes both forms of dynamic authorization decisions. A fair amount of
authorization can be performed using standard technologies, such as the authorization
mechanism in frameworks such as .NET or the Java Authorization and Authentication
Framework (JAAS). Language bindings are also available that enable authorization at the
message level of SOAP, even though these are, at the time of writing, mostly proprietary
solutions. CORBA enables declarative authorization using the CORBA security service.

Authorization can in principle be performed by an external service. Technologies such as
SAML and the upcoming WS-I security support it out of the box.

Although frameworks and APIs are available to support authorization using declarative
mechanisms or even rule-based decision frameworks, you must bear in mind that SOA is
fundamentally about the integration of existing applications. Applications that are to be
integrated might very well use authorizations mechanisms that cannot be mapped easily
onto a common system.

This is because at least some part of the authorization procedure will generally be part of
the service implementation, instead of residing on the service infrastructure level. For
example, the authorization scheme within a certain service implementation might not
easily map to the one in another service implementation. Often, the authorization decision
is buried deep within the service implementation. At the same time, it is often at the heart
of the business process. Requiring externalization of the authorization procedure in the
business process also creates a risk for service enablement in integration projects and
poses an entry barrier for applications to join an integration initiative.

All this makes it rather unusual to perform authorization completely within the service
framework itself because it is genuinely hard to move authorization out of technology.
However, a refactoring of code during service enablement to make specific parts of
authorization pluggable can provide a good compromise with limited impact and high
flexibility. This can include decisions that depend on the principal's static or dynamic group
membership. It can also include rule-based decisions, where the parameters for these
decisions are available at infrastructure level. Later in the service lifecycle, security
frameworks can provide or replace the authorization implementation well within the
lifecycle of the application.

9.4.3. ENCRYPTION AND T RANSPORT SECURITY

When talking to people who cover security for business clients, one is often confronted with
the requirement of encryption. The general impression is that if something is "encrypted,"
it is safe, as long as decryption cannot be performed easily and swiftly. To understand the
pitfalls of this perspective, it is necessary to distinguish between two different forms of
encryption: encryption at the message level and encryption at the transport level. The
former can be employed to create real end-to-end security and is generally the preferable
method. Furthermore, because encryption can be performed at the message level, it is
possible to encrypt only the payload or payload segments of the message. If such a
message uses the SOAP protocol and the W3C's recommendation for XML encryption
syntax and processing, a section of the message using encryption might look like this:

<PaymentInfo xmlns='http://www.dolphinair.com/booking'>
 <Passenger>John Smith</Passenger>
 <Itinerary >ae12345-fght</Itinerary >
 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#
 Element'
 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>
</PaymentInfo>

The benefit of this approach is that it not only provides superior security but that certain
rules can still be applied to the otherwise encrypted messages. This makes it possible to
use message-based routing, to perform advanced audit checks on the unencrypted parts of
the messages, and to perform analysis to detect denial of service attacks, attempts for
message replay, or similar attacks that might otherwise go unnoticed. Of course, this
comes at a price in that the necessary infrastructure to support message-level encryption
must be in place. In the preceding example, the payment information that might be sent
as part of a ticket purchase includes the name of the customer as well as the itinerary ID in
clear text. Only the actual payment information is encrypted. This has the same basic
challenges one faces when creating a thorough authorization infrastructure, both
organizational and technical.

Because of this overhead, it is often a sensible alternative to apply security at the transport
level. The preferred way to accomplish this is to use the Secure Socket Layer (SSL)
protocol. The benefits of this approach are obvious because SSL works almost everywhere,
from mobile phones to mainframe computers. It requires little overhead to initialize, and
resource usage is limited. Where resources are at a premium, it can be made faster using
special cryptographic devices. When two-way SSL is employed, it can even be used to pass
user credentials and to perform transparent user logon. The main advantage, however, is
that it is widely understood. This is a very important issue because many failures in
security infrastructure are due to accidental misconfiguration that in turn occurs because
the implications of the infrastructure parameters are not fully understood.

However, there are also downsides to this approach. Intrusion detection becomes
practically impossible because there is no way to "listen in" to the occurring traffic. When
no end-to-end network connection can be employed, this setup is a potential target for a
man-in-the middle attack because messages must be decrypted somewhere along the
transport chain. This can be a simple network "hop," or messages need to be decrypted by
some part of the SOA architecture, such as a MOM server that encrypts them again when
forwarding to the recipient. Furthermore, two-way SSL for authentication is no longer
usable because the original certificate does not retain a value beyond the first network hop.

In summary, encryption at the message level is definitely more desirable than encryption
at the transport level. Yet more often than not, the latter will be the only feasible solution
due to the lack of standards for creating message-level security and fundamental technical
considerations; for example, with systems where performance is at a premium, you often
cannot afford the computational and memory overhead of message encryption and
decryption.

9.4.4. T RUST DOMAINS

A layered architecture such as an SOA often employs the concept of trusted domains.
Authentication and authorization is located in the application frontend and in the high-level
process-centric services. Other backend services and applications might require no security
at all or might support a very limited set of security features. For example, no authorization
or user-level security might be required by the backend services. Often, minimal security is
imposed using a firewall setup, where connections to the insecure backend services are
allowed only from specific hosts.

This is somewhat analogous to common setups using a Web server or an application server
and a backend database. In this situation, not every user is authenticated against the
database; instead, the server uses a pool of connections to the database that are all
associated with a single database user.

It is evident that such a setup is applicable only within a closed and secured computing
network. For a typical enterprise computing setup, this maps to certain network segments
in a closed data center environment.

One benefit of this approach is the ease of setup and development of the backend services.
The development effort associated with authentication is simply omitted. In addition, the
backend services can be independent of any enterprise single sign-on infrastructure,
making them simpler and ultimately more robust.

The greatest benefits of the approach are also its greatest weaknesses. For example, all
auditing within the backend services must be performed manually. It is thus more
error-prone and harder to maintain. This can lead to enormous efforts if legal regulations
require in-depth changes to auditing. It is often desirable to make a backend service
publicly available. In the case where the required security infrastructure is missing in these
services, they usually must be proxied by another service that adds no business value at
all. This adds an additional level and introduces a maintenance effort if the original service
changes. For example, an airline might decide to expose their booking process to a partner
airline, as in Figure 9-18.

Figure 9-18. A trusted domain can be convenient but can introduce
overhead and entropy if a service in the trusted domain must be

promoted for third-party use. In this example, an airline is offering its
booking service to a partner airline.

[View full size image]

Trust Domains

Trust domains require a controlled, closed environment. Individual securing of
even basic services is likely to save money in the long run and reduce
maintenance efforts.

9.4.5. SECURITY AND HETEROGENEITY

Typical IT landscapes in the enterprise are very heterogeneous. For security considerations,
the same rule applied to SOAs holds true: Do not fight heterogeneity but rather embrace
it. More often than not, it is impractical to bind a backend service, let alone an entire
legacy implementation, completely into the global enterprise security framework. On top of
that, heterogeneity also exists among different client devices to your SOA, as well as the
difference between the infrastructure inside and outside the enterprise or the department
running the SOA.

For the outside world, it is important that the SOA appeals to as many potential clients as
possible. The general rule is to secure the services exposed to the outside world as much
as possible. It might be an option to provide certain services in multiple versions for
different environments and to ensure that access takes place through the correct device.

Within the SOA, it is a good idea to provide a unified security framework. However, no
possible participant of an SOA should be alienated by the required participation in a
security framework that one does not want or cannot support. Thus, it should be an option
rather than a requirement.

In addition to providing an SOA security framework, the infrastructure should be well
protected using firewalls and trip wiring between the different layers of the application, as
illustrated in Figure 9-19.

Figure 9-19. Illustration of security infrastructure that is catering for
hetero-geneous frontends and backends alike. In this example, a

number of service implementations participate in a common security
infrastructure, which uses a common security store. The customer
implementation is part of a trust domain with respect to the SOA

infrastructure. Access to this domain should be policed in a clearly
defined way.

[View full size image]

Secure the OutsidePolice the Inside

Use off-the-shelf technology, such as firewalls, to lock out intrusion at the
network perimeter. Use monitoring and trip wiring at system boundaries inside
the enterprise to detect and report any suspicious activity.

Let us study the practical implications of such a setup with the customer booking process.
The booking process originates on the airline Web site. At this level, customers will usually
authenticate themselves with the system. The ability of the customer to book a flight is
decided within the Web layer. The booking process then calls into the customer booking
service using a single privileged user. A firewall ensures that no call with that user identity
is made from anywhere but the Web application. The process-centric service checks
authorization of the caller and calls out in turn to the different backend services passing
the user. They in turn call out to the actual legacy implementations. Although two of these
share the same user store with the application, credential mapping is performed in order to
access the customer information system on the mainframe. None of the business services
perform any authorization because these decisions are made within the legacy applications
themselves.

If the process originates from a travel agent application frontend, authentication is
performed directly within the application. The application is also bound into the general
authorization scheme, presenting the travel agent with only the authorized options. Each
travel agent is authorized as a separate user.

9.4.6. OTHER SECURITY TOPICS

When a service is offered to third parties outside the enterprise, matters of non-repudiation
and message integrity are vitally important. Both technologies are directly related to
concepts of asymmetric encryption, often using a public key infrastructure [GS1997].

For message integrity, it is sufficient to digitally sign the message using a symmetric or
asymmetric key, provided the key is known only to trusted parties. For most practical
purposes, the message will be signed using the private key of a message sender, and the
receiver will check the signature using the public key of the sender (see Figure 9-10). Note
that the sender and receiver need not be the original sender and final receiver of the
message but that the signature can be added to a sent message only for certain parts of
the route, for example between two trusted domains. Furthermore, the keys need not be
maintained by an independent third party. It is perfectly feasible and often easier to use a
PKI that is hosted within the service provider for this purpose, especially where the service
provider engages in business only with entities that are well known to the original service
provider.

Non-repudiation means that the service provider and service user assume legal
responsibility for the actual message contents (see Figure 9-10). For example, if the airline
orders a certain number of menus from the caterer, the caterer might want to ensure that
the airline has actually placed this exact order and not something different. Likewise, the
airline can use the signed order confirmation of the caterer in case there is a dispute
between the airline and the caterer. For messages to be non-refutable, it is usually
required that a trusted entity manages the public keys of the parties engaged in the actual
business transaction. Moreover, these entities will usually be licensed by some government
agency to conform to certain standards, processes, and service levels. Message signatures
can then be considered suitable for usage in a legal dispute or multimillion dollar contracts,
for example the gross purchase of fuel or the ordering of an aircraft.

Technically, message signing can be easily accomplished if the message is in plain text
format and can easily be manipulated. The best example is signing XML snippets that can
be placed inside the body of a SOAP message.

Figure 9-20. Communication scenario for message integrity (top) and
non-repudiation (bottom). For message integrity, the routers sign the

message and check the signature to ensure message integrity after
leaving and before entering the trusted domains. For non-repudiation,

a trusted third party is needed.
[View full size image]

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9.5. Conclusion
In this chapter, we looked at the different elements that constitute an SOA-enabling
infrastructure, which we refer to as a service bus. Based on our conviction that middleware
heterogeneity is an enterprise reality that can't be solved by introducing yet another set of
interfaces and communication protocols, we described an approach which is based on loose
coupling on the infrastructure level, effectively allowing the co-existence of multiple,
heterogeneous middle ware platforms within a higher-ranking meta bus which is designed
to tie together these different platforms. We also stressed the fact that this meta bus
should not be developed in isolation from concrete application projects in order to avoid
working on an overly abstract level. Practical experience has shown that one can work for
many years on the perfect enterprise infrastructure, without ever reaching a truly stable
result. Consequently, a pragmatic, project driven approach should be taken.

The different application execution containers that we find in an enterprise represent the
basis for building services in an SOA. We discussed the general nature of these containers,
specific implementations, and how to integrate across multiple containers.

To maximize the robustness of our SOA, we discussed dealing with system failures with the
main objective of gathering as much knowledge as possible about critical parts of the
service. This enables recovery from a service failure to be as seamless as possible, both
automatically and manually.

To minimize such failures in the first place, we discussed concepts for scalability and
availability. Both can be addressed using standard products and procedures and
sometimes hardware components such as balancers are a good option. On the other hand,
most frameworks for distributed objects such as EJB and CORBA support the basic building
blocks needed.

Proper planning is essential for providing an available and scalable system. This holds true
for the initial definition of the SLAs up to any subsequent exercise to scale a system by
adding additional hardware and software.

It is fairly easy to accomplish availability at the system level and between individual
requests. Guaranteeing in-request availability is considerably harder. It is not required nor
appropriate for a vast number of application scenarios, and it introduces a significant
overhead into system performance, very much comparable to the problems of distributed
transactions. For practical reasons, the easiest way to accomplish availability is to maintain
request cycles and transactions that are as short as possible. If anything goes wrong at
these points, then using the strategies from the previous sectioncoping with failureswill
usually be sufficient for controlled recovery.

Always consider the weak points in your application first. Keep in mind that the application
is only as strong as its weakest link, both for availability and scalability.

Finally, note how much easier it becomes to cope not only with availability and scalability
but also with service failures if your business logic becomes stateless or even idempotent.
The strategies that deal with stateful systems are more complex and tend to impact on the
overall system performance and ultimately on scalability and availability.

On top of providing reliability and availability, any IT infrastructure must support certain
security features. Although technologies and tools are available that can be used to provide
transparent, enterprise-wide authentication and authorization for an SOA, it is very likely
that a first step will provide only authentication as part of the SOA framework itself. The
reasons are mainly rooted in the fact that authentication can be introduced in most legacy
systems with very little effort, while refactoring the authorization aspects of an application
requires more effort. Also, it will be far easier to implement from an organizational
perspective. Legacy applications are likely to be placed within trusted domains to allow for
integration into the SOA without disturbing the ongoing operation of the application.

SOAs are often introduced together with a single sign-on framework. Shifting more and
more aspects of application security, such as authorization, encryption, and PKI, to use the
framework over time, an SOA can employ and foster the implementation of a true
enterprise end-to-end security infrastructure.

References

[DC2004] Chappell, Dave . Enterprise Service Bus. O'Reilly, 2004.

[GS1996] Garfinkel, Simson , et al. Practical UNIX and Internet Security. O'Reilly, 1996.

[GS1997] Garfinkel, Simson , et al. Web Security and Commerce. O'Reilly, 1997.

[GS2003] Gupta, Samudra . Logging in Java with the JDK 1.4 Logging API and Apache
log4j. Apress, 2003.

[H2003] Hartman, Bret , et al. Mastering Web Services Security. Wiley, 2003.

[PT2001] Peltier, Thomas R. Information Security Risk Analysis. Auerbach Pub, 2001.

[PH2000] Piedad, Floyd and Michael Hawkins . High Availability: Design, Techniques and
Processes. Prentice Hall, 2000.

[TDM2000] Tardugno, Anthony , Thomas DiPasquale, and Robert Matthews . IT Services
Costs, Metrics, Benchmarking and Marketing. Prentice Hall, 2000.

[SK2003] Schmeh, Klaus . Cryptography and Public Key Infrastructure on the Internet.
Wiley & Sons, 2003.

URLs

http://www.redbooks.ibm.com/redbooks/SG242234.html

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

http://www.w3.org/Encryption/2001/

http://www.omg.org/technology/documents/formal/corba_2.htm

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.redbooks.ibm.com/redbooks/SG242234.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.w3.org/Encryption/2001/
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.redbooks.ibm.com/redbooks/SG242234.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.w3.org/Encryption/2001/
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.processtext.com/abcchm.html

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 10. SOA in Action
This chapter shows how a service can be implemented in the real world to serve the needs
of different usage models. You can provide the same service using different protocols and
different granularity according to the context in which you use it. As is the case with
traditional software, it is impossible to design a service based only on abstract principles.
However, you can employ careful planning and refactoring of a service to make an
implementation suitable for many different usage scenarios.

To illustrate the different design considerations applicable to different usage models, we
employ a passenger check-in scenario. A passenger might check in with a mobile phone or
PDA, using an electronic (or physical) ticket at an airline booth. Alternatively, the
passenger might be checked in with one airline on behalf of a second airline, perhaps if the
second flight leg is operated by a different carrier. In some scenarios, the same service
might be accessed using multiple channels at the same time.

In its most generic form, multiple services are at work. At the heart of everything is the
check-in service, assigning seats to passengers on airplanes and keeping track of the seat
occupation in individual planes. As input, it takes any number of passenger ticket coupons
and returns the appropriate number of boarding passes. Usually, other services will also be
involved. Prior to performing the check-in, the ticket service can be used to determine
which tickets are available for a passenger and to validate the tickets before check-in, in
addition to marking the ticket coupons after check-in has been completed.

The customer information service might be contacted to read data regarding the
preferences or frequent flyer account of the customer. Preferences for seating can be used
in the booking itself. A meal preference can be used with services available from the
airline's caterer to prepare only the required amount of special food, thus decreasing the
airline's overhead. Personal data regarding the passenger might be forwarded to the
customs or immigration office at the passenger's destination. For the time being, this
discussion will be limited to the services mentioned previously, although more services
might be involved for issues such as baggage handling and airport services.

As a prerequisite, it is worthwhile to determine if the provided services are
aggregation-friendly. The ticket service's sole purpose is looking up tickets and checking
their validity. These calls can be considered idempotent at the semantic level. If they fail,
the caller can reattempt the call and expect the same result as the previous call.
Invalidating the coupon is an operation that will change some persistently stored data. The
call to this operation is logically tied with the assign seats call of the check-in service itself.
The latter is likely to live in a local transaction and can be rolled back upon failure. In this
event, there will not be any attempt to change the state of the ticket voucher, even though
such changes can be easily reset in a compensating call. Finally, setting the meal
preference is an operation that might also be considered idempotent. However, in an
operational system, this type of process is more likely to be implemented in an
asynchronous manner. In general, it is necessary only to guarantee that the caterer gets
the information about meal preferences well before takeoff rather than at some specific
point in time.

Throughout this chapter, we will use the same example in a set of different scenarios. In
Section 10.1, we discuss a Web application. In Section 10.2, our example takes the form of
an EAI integration scenario. We employ a B2B model in Section 10.3. In Section 10.4, we
discuss a fat client scenario, and in Section 10.5, we deploy it by using a small mobile
device such as a cellular telephone. Finally, in Section 10.6, we discuss the multi-channel
scenario.

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.1. Building Web Applications
As previously discussed, Web applications are particularly suited as clients for a
Service-Oriented Architecture because they offer a natural means of storing context or
state information when making calls to a mainly stateless service architecture. In addition,
they offer a rich user interface, and users of Web applications are accustomed to a high
degree of interactivity. Although the interaction model in Figure 10-1 remains a possibility
for providing check-in functionality using a Web interface, it is likely that an airline will
provide the user with a richer set of choices during the booking process.

Figure 10-1. General service interaction for passenger check-in. The
check-in service takes tickets as input parameters and creates

boarding passes as output parameters, invalidating the relevant
coupon of the ticket. Note that all services are basically stateless.

[View full size image]

These choices will at least include the selection of seats and meals available on the flight.
On the other hand, some of the options that were originally present might not be
applicable. For example, checking in online is often only possible if a registered user has
purchased the ticket because logging in to the airline's Web site is required in order to
perform the check-in operation. On top of that, two people traveling together must check
in separately if they purchased their tickets separately.

In a Web application, users will authenticate themselves against the Web tier, usually
through a Web page form with username and password or client-side certificates. Users
can then be stored within the Web tier of the application. For subsequent calls to services,
there are two possible models: principal propagation or trust. Principal propagation is
trivial and uses frameworks that are built to support this feature. For example, within the
J2EE framework, the same principal object used in the Web tier can directly be used to call
other J2EE services such as Enterprise Java Beans. For other service types, such as CORBA
or SOAP, the process is not as straightforward. It might include the need for mapping
credentials from the Web tier to the service layer in a specific way. As mentioned in
Chapter 9, "Infrastructure of the Service Bus," SOAP does not support a standardized
means of passing credentials. Because Web sites can operate within a controlled corporate
environment, trust between the Web tier and the service layer is a common scenario. All
calls to the service layer are then carried out using a common identityor no identity at
alland the actual caller principal is just passed as a parameter using call parameters. Of
course, this requires that the Web application is not exposed directly to a sensitive network
segment.

The interaction diagram in Figure 10-2 illustrates the need to expose the "assign seats"
functionality to the outside client. In addition, displaying the available seats to the user for
a given plane's seating configuration is also necessary. Although it is tempting to provide
this type of layout in an ad-hoc manner within the Web application, perhaps as a number
of configuration files, this implementation would soon become unmanageable. Airlines
often change their seating configurations and add new planes, and it is important to
provide this information to customers. In addition, the seat configuration of the airplane
and the listing of available seats can be transferred within a single call, providing a good
example of a coarse-grained data structure.

Figure 10-2. Interaction that shows the check-in process for a Web
application. The state of the application is maintained in the Web

application.
[View full size image]

Figure 10-2 shows the full interaction diagram for the Web application invocation. Note
that we made use of the results from Chapter 8, "Process Integrity," by pushing state as
far up the chain as possible. In fact, all state is stored in the Web application itself. This
enables a rich interaction between customer and application without the need for any
stateful services. Note that the transaction boundaries of the original example have not
changed. There is no need to expose transactions directly to the client.

A reasonable amount of interaction takes place between the client and the Web application
directly without any need to involve the service layer. This is the result of a well-defined
location for storing conversational state along with an optimistic concurrency model (see
Chapter 8). After the available tickets have been retrieved from the TicketService, users
may choose any selection of flight coupons for which they want to check in. Any logical
checks, such as whether a check-in for the coupon can be performed at the current date,
can be easily carried out at the Web tier. This is achievable because one person generally
handles a single coupon at a time. Of course, race conditions can still occur, such as if
someone tries to check in using the telephone and a Web application simultaneously. The
same holds true for seat selection. While making the seating selection, one user might
select some seats that are already reserved by another user. However, given the time
available for check-in and the total number of passengers on a plane, this is rather
unlikely. In the event of an error when assigning seats, the user can be prompted with an
updated seat map to perform a reselect.

Although the service calls for reserving seats and invalidating a ticket are technically
idempotent, this fact cannot be exposed to the customer. One reason is that you shouldn't
expose a recoverable error to the customer in the first place. The other is that although
changing the state of a ticket is idempotent, the creation of boarding passes might well not
be. In that case, it is usually necessary to prevent the customer from making the same call
more than once. In Web applications, this is a common scenario that can happen easily if
the customer impatiently hits the reload or submit button repeatedly. If not handled
properly, such behavior can at worst stall the application. The solution is to apply a
one-time transaction pattern (OTT). This involves storing a transaction ID with associated
states such as running, finished, and failed. If a customer reattempts an operation, the
system retrieves the state of the one-time transaction ID and forwards the customer to an
appropriate page. Figure 10-3 illustrates this behavior.

Figure 10-3. One-time transaction pattern. The Web application
manages a number of transaction tokens and serves requests based
on the state of the tokens. For example, a token can start precisely

one operation. While the token is in the running state, some
meaningful information is returned to the client.

As we mentioned before, service calls can be either synchronous or asynchronous and can
be long running. The one-time transaction pattern is a suitable technology for handling
such an invocation scenario. Here, the invocation returns a status page immediately after
dispatching the asynchronous call. The status page checks periodically for available results
using the OTT token. This is a common technique for complicated and long-running
processes such as purchasing airline tickets.

It is worth mentioning that the creation of a Web application can justify implementing an
SOA. In many Web applications, it is necessary to interface with an organization's
operational core systems, which can be anything from mainframe systems or relational
databases to CORBA or J2EE servers. Thus, the creation of Web applications often involves
the integration of multiple types of enterprise systems. Usually, this is achieved by using
various vendor-specific APIs to connect to the different systems and exposing some
consolidated API to the application. Because this integration effort must be performed one
way or another, the implementation of these integrations as services presents relatively
small overhead and manifests itself mainly during design time in the way transaction
boundaries and principal propagation are addressed in the application. This will at least
lead to an internal API that is "service-ready" and that can be exposed as a service using
appropriate tools.

Web applications can be created using a number of tools, including Perl, PHP, Python, Java
Server Pages (JSP), and Microsoft's ASP.NET. When creating a Web application that is
simply a client to existing services, any environment that fosters access to the technology
used to implement these services can be a reasonable choice. For example, if your SOA is
built using Enterprise Java Beans, then using Java Server Pages and Servlets for the Web
application is the natural choice. Likewise, if the SOA is implemented using XML over HTTP,
perhaps with SOAP, you can use any platform with support for the latest Web service
technologies for the Web application. For effectively employing an OTT pattern, the
platform should also facilitate the easy creation of request interceptors. J2EE Servlet filters
provide one such mechanism.

Many Web applications involve not only the use of existing services but also the direct
integration of existing systems. It is usually a good idea to focus on a common skill set for
the creation of such an application. The J2EE platform and Microsoft .NET are suitable to
that end, not least because components created on these platforms can easily be turned
into Web services.

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.2. Enterprise Application Integration
At first glance, Enterprise Application Integration (EAI) appears to be the perfect
environment to employ an SOA: In fact, plenty of reasons to use an SOA as a driver for EAI
exist, and vice versa. However, EAIs pose a certain set of requirements in addition to
profound non-technical issues that you must consider.

Today, most large organizations have a highly fragmented application infrastructure, in
which a vast number of client applications have been created using multiple programming
platforms and communication infrastructures from multiple vendors. A recent example of
the endeavor to solve all application integration problems is the introduction of a corporate
"standard" ERP (Enterprise Resource Planning) suite. This process failed in most
organizations due to the relatively low flexibility such a solution provides and the fact that
businesses have a need for tactical IT solutions, as opposed to strategically planned
applications.

This example of failure provides a reason to be wary of addressing EAI problems with an
SOA. Nevertheless, if an SOA is properly deployed, it will address many technical and core
concerns related to EAI. There are two ways of looking at EAI in a service-oriented world:
as a service provider and as a service consumer. As a service consumer, you typically want
a service that is easy to access, highly available, functional complete, and stable over an
indefinite period of time. As a service provider, you might want a service that is easy to
deploy and to upgrade; in an EAI environment, quality of service, single sign-on, and other
attributes become paramount.

At the outset, it is worth noting that so-called EAI product suites are generally unsuited to
tackle the aforementioned EAI challenges. Most provide a clear integration path that is
usually supported by accompanying tools, some of which provide for quality of service and
ship pluggable security modules, but they usually fail to provide a stable view of the result
of the integration process. Furthermore, because they only partly adhere to open or
industry standards, they are very unlikely to be stable for a reasonable period of time. This
is one of the prime reasons that organizations that take SOA seriously almost always
choose to build their core service architecture themselves while employing standards
wherever possible (see the case studies in Chapters 14 through 17).

10.2.1. SERVICE ENABLEMENT

In order to provide EAI functionality in a service-oriented environment, the most common
task is service enablement. Service enablement is the process that creates a service to
encapsulate the functionality provided by an existing application. The type of application
encapsulated can be anything from a monolithic mainframe application to a distributed
application built on top of CORBA or DCOM.

Of course, service enablement is more than just wrapping and exposing an existing
programming interface. As an example, consider the movement of an existing check-in
application in a service-oriented domain. Assume thatas shown in Figure 10-4the original
application is a typical client/server application. As a first step for service enablement, the
application is separated into a visual and a non-visual part. Communication between both
parts is grouped based on their business domain. Access to the non-visual layer is defined
by one or more interfaces. If possible, the implementation of the interfaces and the
persistent data upon which they act can also be separated. Finally, the application is
moved to the service infrastructure.

Figure 10-4. Transformation of a monolithic application into a
service-oriented application.

[View full size image]

Depending on the application, one or more services might emerge from this analysis. For
example, when analyzing a real-world check-in application, it is quite likely that services
such as ticketing, baggage handling, and actual check-in will surface during such an
analysis. After this analysis is complete, consolidated interface descriptions for the
communication can be derived. This should include provisions for undoable actions and
idempotency wherever possible. The implementation and possibly the interfaces need to be
changed to include infrastructure services such as user management and security as well
as internal changes for server-side resource handling. Now the visual layer and the service
layer can actually be separated.

It is evident from the check-in example that the examination of a single application is
unlikely to yield fully reusable services. Although it is reasonable to assume that one can
obtain a fairly complete description of the check-in service itself, it is rather unlikely that
sufficient information about the baggage handling or the ticketing service can be obtained.

If more than one application exists that relies on common underlying principles, immediate
reuse benefits can be obtained from the service enablement. For example, many
applications share the concept and even the persistence mechanism for entities, such as
customer or contract in a business scenario. Factoring these out into services not only
provides instant benefits for reuse but also acts as a successful demonstration of the
suitability of the Service-Oriented Architecture that is likely to empower other departments
to use the newly created services and contribute new services.

When service-enabling applications for EAI in the way we have described, it is essential
that a service registry be available. This can be used to identify those remaining services
that are already available in the application and that can be factored out of the existing
application.

Another common scenario is to provide services for an already distributed architecture.
Recall that a distributed architecture alone does not necessarily consolidate an SOA. Often,
the interaction patterns between the application frontend and the distributed components
are too fine-grained. A sensible approach is to define façade services that sit between the
application and the distributed objects. The application is stripped of all knowledge
regarding items such as distributed objects and uses the service as its sole communication
channel to the backend logic (see Figure 10-5). The service then aggregates the
functionality available in the distributed computing environment. At the same time,
coupling in the distributed object layer can be replaced by explicitly coupling services. It
will also use a common service infrastructure, as you have seen previously. It is often
desirable to replace the distributed object implementation with a more localized
implementation to reduce network load and latency. Because the implementation has been
encapsulated in the service layer, it can easily be replaced without having an effect on the
applications that use the service. The service façades to the distributed computing
environment should be cut in a way that enables them to act as the sole owner of the data
upon which they operate.

Figure 10-5. Creating a service layer that replaces direct interaction
with distributed objects.

[View full size image]

There are, of course, other scenarios that can be used to enable transformation toward an
SOA. For example, rich applications that rely on backend services (see Section 10.4)
greatly benefit from the creation of a service layer.

EAI Can Drive an SOA

EAI is an excellent driver for service-enabling existing applications. From a
business perspective, EAI is introduced to simplify the application infrastructure
and to foster reuseproviding good motivation for creating an SOA.

10.2.2. STABILITY AND UPGRADE ABILITY

Service stability and the ability to upgrade are two of the most desirable features in an EAI
environment. The reason is that the service consumer might reside in a different
department or even in a different country from the service provider. The service provider
must be able to upgrade a service without having an impact on current applications that
integrate this service. You can use various methods to solve this problem, with the two
main styles being backward compatibility and the provision of different versions. Backward
compatibility is illustrated in Figure 10-6. Effectively, this means that service interfaces
can only be extended without violating existing interface contracts. This is similar to the
discussion on payload semantics in Chapter 3, "Inventory of Distributed Computing
Concepts." Unfortunately, this approach tends to weaken the interface contracts over time,
which in turn makes it difficult to enforce a specific usage style.

Figure 10-6. A service that supports versioning by extension of the
request document format. Although this is easy to achieve with pure

payload semantics, it can be difficult in other environments.

Although it is fairly straightforward to achieve this using XML communication such as
SOAP, it can be arbitrarily hard to do so using CORBA or DCOM without reverting to pure
payload semantics.

On the other hand, you can easily provide different production versions of a service by
deploying the service in different locations. These locations can be looked up in a registry
that also contains information regarding the most up-to-date service available. Although
this creates significant overhead in managing the SOA, it completely decouples service
upgrades from existing applications. It is also straightforward to provide this using any
available communication model. The out-of-date services are continuously monitored and
can be shut down when no more applications are accessing them. Moreover, it might be
desirable to reimplement the old services in terms of the new services. By keeping the
contract unchanged, the old service clients can communicate transparently with the new
implementations. Figure 10-7 illustrates two versions of the check-in service working with
an online registry. Using the online registry for binding to the actual service
implementation at runtime makes it possible to migrate older services to different, less
capable hardware.

Figure 10-7. An SOA that enables different versions of a single service
to be productive at the same time.

[View full size image]

EAI Requires Repositories

EAI scenarios should use service repositories because this is the best way to
ensure stability and upgrade ability. It is crucial to give your internal clients
peace of mind when using the SOA.

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.3. Business-to-Business
In a business-to-business (B2B) environment, a corporation offers some service to another
company over public networks such as the Internet. In a B2B scenario, both the service
consumer and the service provider benefit greatly from standard communication protocols.
The service consumer profits from the increased flexibility gained when changing to
another provider or when using several providers at the same time. The service provider
can also profitfor example, depending on the type of communication, it might be possible
to eliminate the necessity to ship software to the client.

The same goes for the security infrastructure. Because security infrastructures can get very
complicated, the client and server must be certain to use a mechanism that can be trusted,
where both ends of the communication chain can identify a security violation using their
standard system management tools. Standards are also desirable because many
interactions create a legal obligation between the parties.

In addition, it is attractive to define a standard format for the actual data being
transferred. This saves both sides time and money in service development and integration.
UN/CEFACT (ebXML) and RosettaNet provide examples of initiatives to establish data
standards. [1] Although the resulting standards are not yet mature and they are not
appropriate for all B2B problems, it is worthwhile to see if they are applicable in specific
cases.

[1] See the URLs list at the end of this chapter.

Most initiatives that define standard protocols result in the creation of rather large
documents that are exchanged in a business transaction. This is basically analogous to a
service-oriented approach with very coarse granularity. Because of the latency that can be
experienced on a public network connection, it is far more efficient to send a single large
document instead of making short procedural interactions.

Although the business process itself can be stateful, it pays to create stateless service
invocations. In a B2B scenario, the most common way to achieve this is to pass a token
along with every service invocation. These tokens can be used once or on a cyclical basis if
the number of tokens is large compared to the frequency of interactions.

Go Stateless for B2B

Stateless semantics are especially important in B2B scenarios. They enable
interaction with remote customers over connections with high network latency.
They also create much fewer constraints for the calling applications.

Although the authors do not believe that a runtime-naming service or repository is
mandatory in an SOA environment, it is of great use in a B2B scenario. The pressure for a
service to provide location transparency is far higher than in a controlled enterprise
environment. After a business partner uses a service, it might require significant effort to
switch to a different version. Even if it can be achieved by configuration only, it still creates
an overhead that might result in unwanted downtime. Both service user and provider can
be separated by large distancesas much as thousands of miles. This makes location
transparency a necessity in order to provide disaster recovery capabilities. If a customer
uses a service of a company whose main computing center goes down in a fire, the
customer expects to be transferred to the secondary site automatically. Of course, this also
includes the service repository itself being failsafe.

Location Transparency for Stable B2B Services

B2B scenarios require real location transparency using service repositories. This
enables customers to securely establish long-term relationships regardless of
changes to the supplier's infrastructure.

B2B scenarios can include online billing mechanisms, although they are more common in a
business-to-consumer (B2C) scenario. A B2B scenario will generally log only access
information on the side of the service provider. This information can later be used to create
a monthly invoice.

In a B2B scenario, the check-in service can be used by partner airlines to check in
customers on a flight leg that is operated by the service provider. In contrast to the
examples considered so far, the main difference is that the service provider cannot validate
the actual request against its own ticket database. There are several options for handling
this situation.

The first option is to trust the remote system because it is well established that the
business partner is trustworthy and provides only valid requests. Here, the remote check-in
service does not have any information about the tickets that are used on individual flight
legs, nor does the service have any information regarding the respective passenger. Data
that directly relates to customer service qualitysuch as the customer's meal
preferencemust therefore be passed in the check-in call itself. This is shown in Figure 10-8.

Figure 10-8. One-way communication scenario. The ticketing company
performs the check-in using the operator's service, passing all the

relevant data during the call itself.
[View full size image]

The second option is to synchronize all relevant ticket and customer data between the
partner companies on a regular basis. The ticketing company forwards the ticket data to
the operating airlines, and the operating airlines in turn forward the flight information back
to the ticketing companies. Although the check-in process is similar to the ones discussed
in earlier chapters, service access within a single corporation is all that is needed during
the actual check-in operation.

Finally, the third option in the B2B scenario is that the service provider becomes a service
consumer at the other airline's ticket information service. In this situation, both businesses
create an effective two-way communication scenario. Because the clients trust each other,
the operating airline can validate the tickets of the partner's customers and retrieve some
part of the customer preferences. This scenario is shown in Figure 10-9.

Figure 10-9. Two-way communication scenario during the check-in
process. The flight's operator uses the services of the ticketing

company to validate flight coupons and retrieve customer
preferences.

[View full size image]

When using external services, care must be taken to cope with the breakdown of the
external service. Even if SLAs exists that guarantee a certain availability of the external
service, network failures or failures of equipment on the client side should be anticipated.
The error should be handled gracefully using the same general principles outlined in
Chapter 9.

In general, the best type of service for this scenario depends on both the level of customer
service one wants to provide and the technical capabilities and geographical locations of
the airlines.

If the partners have weak connectivity, it might be best to use the first option and provide
the necessary accounting information separately from the actual process. A common
reason for choosing this type of solution is when latency is so high that any additional
server-side processing introduces unbearable risks on system performance. Another strong
reason for this scenario is when only certain partners are technically capable of operating
as service providers.

If the partners are separated by a large distanceconsider a European and a South American
carrieran infrequent synchronization mechanism might offer the best solution.

If the partners are located close together and can use a stable connection with sufficient
bandwidth, they can use the third scenario. This offers customers the best service,
enabling them to buy a ticket from one airline and check in with another airline easily. It
also results in the best data quality.

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.4. Fat Clients
The term "fat client" is a common synonym for an application type that provides a lot of its
core processes on the client machine and usually relies on a single backend system, which
can be a relational database or a host system that provides some procedural capabilities.

Fat clients have a bad reputation in IT departments mainly because they created real
challenges for deployment and maintenance. Because they aggregate a lot of
computational logic, they require frequent rollouts of the whole application package
throughout the enterprise. On the other hand, fat client applications have enjoyed a good
reputation among many end users. They provide swift operations compared to many poorly
built Web applications that have been created to replace them. They also provide complex
interaction models and advanced graphical capabilities that are very hard to re-create
using Web interfaces. Therefore, in many usage scenarios, fat clients are regarded as more
user-friendly.

Although fat client applications need a considerable amount of deployment and
maintenance effort, they also help to save bandwidth and increase response times
compared to typical Web applications. Another strong advantage of fat clients is that they
offer easy access to local hardware devices such as printers and smart card readers, which
makes them particularly well suited for use in a controlled environment with medium to
long release cycles.

You can use services together with fat clients to transform fat clients to rich clients, in
which the client application directly accesses different services and keeps track of any
necessary state information. This works in much the same way as for the Web application
layer in Section 10.1. The core advantage is that the rich client application can be
completely decoupled from the backend implementation. It thus remains robust in the face
of alteration in the data model and ultimately against a possible change in the overall
backend infrastructure, such as the gradual replacement of host systems with integrated
services.

Build Rich Clients, Not Fat Clients

Usage of thin clients does not necessarily mean reduced functionality. Services
can enable you to build rich clients rather than fat clients.

Fat clients can differ in their authentication schemes. Whereas a Web application user
needs to authenticate itself to the servere.g. using username and passwordfat clients
might be trusted clients or might be authenticated using a certificate. Where backend
systems do not support this type of authentication, the service might present some default
username and password as a proxy user. When using a proxy user, you must take care to
minimize the resultant security risk (see Chapter 9). In particular, the proxy user
credential should not be stored in clear text; they must be configurable, and the allowed
origins of proxy user request should be restricted to a well-defined set of network
addresses.

Proxy Users Protect Backend Systems

Proxy users can isolate backend systems from physical users. Because this also
involves a security risk, you must take extra care to prevent the misuse of proxy
users.

In the check-in example, rich clients include check-in kiosks and workstations of check-in
clerks. These rich clients access printers for boarding passes and baggage tags and are
usually equipped with card readers for electronic tickets, credit cards, or frequent traveler
cards. Advanced check-in kiosks might also connect to baggage scales and conveyors. They
provide interfaces that make it as easy as possible to navigate across the seat map of the
airplane and to choose seats for check-in. Yet they do not perform the actual check-in
process and do not directly manipulate data. Instead, they use a service layer that is
usually identical to the one used by Web applications. Figure 10-10 shows a typical rich
client setup.

Figure 10-10. Example of a fat client containing a smart card reader,
luggage scale, luggage tag printer, and boarding pass printer. The fat
client uses standard services that in turn rely on relational databases

and host systems.

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.5. Designing for Small Devices
For the foreseeable future, the design of services for small devices effectively means
designing for a specific device. (For the purpose of this chapter, a small device is one with
a small screen of about 150 x 100 pixels, limited processing power, memory often far less
than 256kB, and limited data entry support although with a capability to create network
connections to facilitate participation in an SOA.) One of the most important points is that
the interaction pattern must match the capabilities of the device. Rich interaction patterns
for different classes of applications often fail with small devices because of the physical
characteristics of the device and also because of additional cost and longer interaction time
for the user imposed by these patterns. Because network connectivity might be at a
premium, the service implementation itself will usually be as lean as possible to minimize
latency.

It is likely that security will be limited to mostly transport security because processing
power and available memory might not allow for the encryption and signature of messages
as defined in Chapter 9.

Although J2ME MIDP 2.0 supports transport security using HTTPS, there is no support in
version 1.0. This means that you must use some other means to prevent passing extensive
credentials between server and client. Authentications can be performed in ways such as
using the telephone number, using username/password, or using certificates stored in the
client. Although using the telephone number might seem like the best scenario, there are a
number of reasons to avoid it.

For security reasons, runtime of environments such as J2ME MIDP do not enable access to
telephony functionality, including the phone number. Furthermore, unless the delivery path
is controlled, the potential for abuse of the telephone number for authentication is very
high, both because it is easy to tamper with and because it is basically a public number
that can be readily obtained. However, the phone number can be an excellent means of
authentication when using SMS-based services, as we discuss at the end of this chapter.

One way or another, this information will be stored persistently at the client. This is
mandatory due to the limited data entry support on small devices. A requirement to
repeatedly enter a username and password with a clumsy keyboard obstructs usability.
Alternatively, it is possible to envisage interaction without the user actually logging in to
the system at all. The invocation might be triggered by a unique ID such as a reservation
number.

Lightweight Security

Security features often require rather large computational and memory
resources. Use only security measures that have little impact on both the device
and the user.

Some small devices can use SOAP (or even CORBA) for remote invocations. However, you
must carefully consider whether this is a good idea. For example, SOAP requires resources
at almost every level of the small device, and a significant amount of processing power and
memory is used for XML parsing. In addition, SOAP libraries that are not native to the
device must be bundled with the application, which often increases the size of the
application beyond what is possible for the target device. When using SOAP, you must also
take into account that the specification is still evolving. Because implementations for
mobile devices lag back behind the current standard, often by more than a year, it is
unlikely that a state-of-the-art small device can properly address state-of-the-art SOAP
services in the organization.

Therefore, it is sensible to decouple the service invocation in the device from the actual
service using an adapter that resides at a gateway server. This setup enables the client to
connect to the service using the least common denominator in technology, usually
connecting using HTTP or HTTPS. Ifas with MIDP 1.0only HTTP is available, the server can
establish a session that prevents the repeated passing of users' credentials over the wire.
The session token (or login token) can be stored in the SOAP header or can be sent using a
SOAP parameter. In the authors' experience, moving from lightweight J2ME SOAP
implementations, such as kSOAP, to a HTTP-POST style interaction can reduce the client
size by approximately 20kB. Given that the footprint allowed by J2ME MIDP Midlet Suites
can be as low as 64kB or less, this is effectively a huge reduction in size that in turn
creates the opportunity for a of richer and more user-friendly application.

Minimize Resources for Communication

In small devices, use resources for the application rather than the
communication. It is better to create a protocol translator on the server side
than to withhold functionality from the customer due to resource constraints.

In the check-in example, most users will not be ready to select the seats using a small
screen and a hard-to-handle keyboard. Using a small device, it is more likely that the user
will check-in right away after the proper flight coupon has been selected. Because
interaction using mobile phones is somewhat cumbersome, it might even be possible to
check in by simply typing the coupon number for which to perform the check-in and hitting
"continue." A typical interaction scenario is shown in Figure 10-11. In this example, this
process is achieved by eliminating the need to query the customer service and the caterer.
Note that service granularities used by small devices tend to be coarser than services used
by Web applications.

Figure 10-11. Typical service interaction using a small device.

As we discussed previously, there are various ways to authenticate the user. In the
check-in example, it is hard to board the plane without being the actual ticket holder.
Thus, it is possible to check in a single flight coupon based on an ID that is printed on the
coupon, as illustrated in Figure 10-12. In such a scenario, only the person holding the
physical flight coupon can perform the check-in.

Figure 10-12. Check-in using a mobile device. In this example, the
check-in is performed solely using the coupon ID.

An alternative scenario with a richer interaction pattern is shown in Figure 10-13. It uses a
Web application to store some conversational state, and in the example, this is leveraged
to reduce latency for the actual check-in call. To that end, just after login, it dispatches an
asynchronous request to the potentially costly operation that obtains the customer's of
preferences.

Figure 10-13. Using a proxy Web application as a service proxy. As
with Web applications, the proxy can be used for state aggregation. It

can also dispatch some asynchronous calls, such as requesting a
certain type of meal, to reduce latency within the actual check-in

calls.
[View full size image]

When targeting mobile phones, it might also be an option not to actually install the service
on the mobile phone. Mobile phone technology supports options such as short message
service (SMS) or its succeeding technology, multimedia message service (MMS), that can
also be used to connect to a service. To check in, the user can utilize the coupon number
on the ticket along with a dedicated telephone number for checking in. An immediate
advantage might be that the user can be uniquely identified using his phone number.
However, this communication model has certain security restrictions, although it might
well be the best option for deploying consumer services such as multiplayer role playing
games or dating services (see Figure 10-14).

Figure 10-14. Engaging a service using an SMS proxy. This can
provide a cleanyet potentially insecureway to identity the customer.

[View full size image]

Due to their coarse-grained structure, services that are used from small devices are an
excellent option for other usage scenarios whenever some resources are at a premium. An
example is a check-in terminal that needs to function using limited network connectivity.

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10.6. Multi-Channel Applications
SOAs are extremely effective at implementing multi-channel applications. Strengths such
as building a reusable, functional infrastructure, mastering heterogeneity, and providing
easy access to data and business logic are key factors for successful multi-channel
projects.

A multi-channel application is characterized by a functional core that can be accessed
through different channels by either human users or programs, as shown in Figure 10-15.
Each channel typically has its own characteristic variant of the basic business processes
and specific access technology. These specifics depend directly on requirements of the
channel's users such as sales department, back office, or service center. Due to the
different requirements, you will often find significant differences in the channels' business
processes. For example, a sales representative will require a different view of customer
data from a back office clerk or from a service center agent. The processes also depend on
the access technology. As we have already discussed in the previous section, you will
probably find that the processes on a mobile device with a low bandwidth connection to the
functional core and a small display are different from the processes that can be supported
by a Web application.

Figure 10-15. A multi-channel application consists of a functional core
that is shared by several channels. Each channel provides a specific

view of core functionality, according to the requirements of the
channel user and the channel technology.

Typical multi-channel applications can provide channels such as the Internet, various
mobile channels such as WAP, B2B, fat clients, call centers, or voice applications. They also
provide cross-channel functionality, such as co-browsing or channel switching.

10.6.1. FUNDAMENTAL SOA

A fundamental SOA represents the simplest model of SOA-based multi-channel
applications (see Chapter 6, "The Architectural Roadmap"). In many cases, this simplicity
makes it the preferred choice of model. In this scenario, you have services neither in the
aggregation layer nor in the process layer. Consequently, you can also abandon extra tiers
and the appropriate hardware, which can lead to reduced latency and improved application
response times.

The authors recommend the usage of this minimal approach where possible. This advice
does not apply only to multi-channel applications, either. It is beneficial for every SOA to
keep operations as simple as possible. Abandoning complexity should be a permanent
effort. Every tier that can be avoided is a valuable contribution to the system's
maintainability and performance (see Figure 10-16).

Figure 10-16. The fundamental SOA represents a lean service
approach that basically implies the usage of application frontends and
basic services. No services in the aggregation layer or process layer

are involved.
[View full size image]

Although a lean approach is desirable, you might find reasons to apply a more complex
approach in practice. Requirements such as co-browsing or channel switching, highly
complex processes, heterogeneous backend systems, load balancing, and other reasons
can force the usage of façades or process-centric services.

10.6.2. SERVICE FA<ADE

A service façade represents a unified interface to the basic service layer for a specific
project and encapsulates the functionality of the underlying services. In the airline
example, this is particularly useful in order to handle the heterogeneity of the underlying
basic services. The façade encapsulates the different technologies and concepts and
provides a convenient view of the functionality (see Figure 10-17).

Figure 10-17. A service façade can encapsulate the complexity of the
underlying service infrastructure. In particular, heterogeneous

application landscapes can benefit from service façades.
[View full size image]

Ironically, façades provide only limited benefits for multi-channel applications. It is true
that multi-channel applications suffer worst from the heterogeneity of the application
landscape. A unifying layer that encapsulates the heterogeneity of the backend systems
should be very helpful at first glance. Unfortunately, the frontend of a multi-channel
application is also heterogeneous. Thus, a unified façade for access to the backend can only
support a subset of channels directly, or it must provide specific operations for some
channels. More often, some channels will require a technically different access to the
backend, which will require additional technology gateways or extra efforts in the process
layer.

There is a benefit however, because this façade approach decouples the individual
project-specific code from general domain code. If nothing else, this creates better
maintainability due to decoupled release cycles in the basic layer and the enterprise layer.
It can also provide an easier way to manage delivery responsibilities within a project.

Service façades are highly project-specific. Although the idea of one unifying layer might
be tempting, it is not realistic. In practice, it's usually better for every project to use its
own service façade if it requires one (see Chapter 6).

10.6.3. PROCESS-ENABLED SOA

Choosing whether to introduce a process layer is an important design decision. You should
consider a process-centric service if several channels have similar processes and the
according process logic can be shared. A process-centric service is also useful if features
such as channel switching or co-browsing are required. Last but not least, you can consider
process-centric services to handle load-balancing issues (see Chapter 6).

However, keep in mind that the implementation of process-centric services introduces an
additional element to the architecture that could increase latency, could make the overall
design more complex, and might need additional maintenance. Therefore, you should know
the exact benefits before deciding to implement a process-centric service. In our airline
example, we introduce the booking process service in order to provide channel switching
(see Figure 10-18).

Figure 10-18. The introduction of a process-centric service is a major
design decision that requires careful consideration.

[View full size image]

Although a process-centric service can cover the generic behavior of the business process
booking, the application frontends that represent the different channels must add
channel-specific behavior. In general, every channel has certain specifics that differentiate
it from other channels. This pattern is typical for multi-channel applications. In fact, it is
their nature to provide "similar" processes using different channels. At this point, the
process layer is rather thin, only exposing the processing steps that are common to allor
mostclients that retain their channel-specific logic.

As soon as you have introduced a process layer, the next potential step is the
implementation of channel-specific process logic in distinct services that can also serve as
technology gateways (see Figure 10-19).

Figure 10-19. Every channel requires its own channel-specific process
logic.

[View full size image]

Another decision applies to the booking façade. If you already have a generic
process-centric service, then the functionality of the booking façade can be included in the
process-centric service. Every tier inevitably increases the system's latency. As a distinct
entity, it also requires additional attention in the maintenance phase.

Consider a user who attempts to book a specific flight using the airline's Web site. The user
can access the flight search functionality, select the flight, and even book a specific seat.
However, the actual booking operation fails due to a temporary failure or due to an error in
the billing engine. A normal airline simply presents the customer with a message
indicating that there is a problem and that it is okay to try laterat which time the booking
might or might not work. The actual details of the error might well be far beyond anything
the user can easily understand. As a practical example, all credit cards of the brand
"Eurocard" ceased to work in 2004 with a major airline's Web site, even though the actual
card did not change. The problem was that all the users needed to change the
identification of this type of card to "Mastercard."

To cope with such issues, the service-enabled airline goes a step further. A ticket is
automatically created for a service center agent indicating the type of failure. The service
center agent can complete the booking, using the very same service that the original Web
site uses. If needed, the agent can contact the ticket purchaser to request additional
information. The Web site, however, might still be unable to access the service due to a
network problem or an availability constraint. After the booking is completed, the user is
sent an SMS or email indicating that the flight has been successfully booked and payed for.
The message includes a link to an appropriate Web or WAP page. This page again uses the
same service to access the required information.

Co-browsing is another feature that requires similar implementation techniques. It is a
very powerful feature if you want to provide highly interactive portals. You can enable a
customer to contact a service center agent at any time within a session by clicking on a
button in an Internet form. This click opens a voice and video channel to the agent. The
agent gets access to the same application and can support the customer to finish the
session. The customer and agent can work with exactly the same user screens to make
their dealings as interactive as possible.

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

10.7. Conclusion
We have discussed several scenarios where an SOA can be beneficial. The requirements for
the granularity that a service must provide depend on the usage scenario. The same goes
for the security constraints that can be imposed upon a service. Scenarios such as a mobile
one might require coarse-grained and rather insecure services, whereas scenarios such as
Web-based and fat client ones will usually benefit from a somewhat smalleryet still
coarsegranularity and a tighter security infrastructure. Much the same goes for the
technology. Although SOAs internal to the enterprise can be based on well-understood and
mature technologies, such as transaction monitors or EJBs, others such as B2B need a
technology such as SOAP to offer maximum reusability and the possibility for true location
transparency. Furthermore, mobile devices need the simplest protocol available to cope
with the resource constraints at hand. Although it is tempting to strive for the lowest
common denominator in service design, this will most likely lead to failure. It might be
better to provide a service with a number of different interfaces and protocols and carefully
design the required service in conjunction with the customer.

References

[Erl04] Erl, Thomas . Service-Oriented Architectures. Prentice Hall, 2004.

[Fow02] Fowler, Martin . Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[Ha04] Harrison, Richard . Symbian OS C++ for Mobile Phones. John Wiley & Sons, 2004.

[Ri01] Riggs, Roger, Antero Taivalsaari, Jim van Peursem, Jyri Huopaniemi, Mark Patel, and
Aleksi Uotila . Programming Wireless Devices with the Java2 Platform. Addison-Wesley
Professional, 2001.

[SGG96] Shaw, Mary and David Garland . Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[BCK03] Bass, Len, Paul Clements, and Rick Kazman . Software Architecture in Practice.
Addison-Wesley Professional, 2003.

[Mc03] McGovern, James, Sameer Tyagi, Sunil Mathew, and Michael Stevens . Java Web
Service Architecture. Morgan Kaufman, 2003.

URLs

http://www.rosettanet.org

http://www.unece.org/cefact/

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.rosettanet.org
http://www.unece.org/cefact/
http://www.processtext.com/abcchm.html
http://www.rosettanet.org
http://www.unece.org/cefact/
http://www.processtext.com/abcchm.html

Part II: Organizational Roadmap
Part II of this book outlines the organizational roadmap to the service-enabled enterprise.
We discuss the benefits of an SOA at the organizational level and look at the perspective of
the individual stakeholders in SOA. Furthermore, we provide advice on how to introduce an
SOA in the organization, and we provide best practices for SOA-driven project
management.

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 11. Motivation and Benefits
Previous chapters discussed what SOAs are and provided technical details of their
implementation. We now focus on the challenge of actually introducing an SOA into the
enterprise. This chapter addresses the general motivation and the main benefits to be
expected. Subsequent chapters discuss strategies for successfully introducing an SOA into
an enterprise and for project management.

This chapter consists of two major parts. Section 11.1 begins with a discussion on
enterprise-level goals in order to round off this topic that we saw first in Chapter 1, "An
Enterprise IT Renovation Roadmap." The pressure on organizations to become more agile
and efficient is a major driving force in the introduction of an SOA, as is the inflexibility of
existing IT infrastructures composed of monolithic applications. Section 11.2 describes the
viewpoints of the individual stakeholders and considers the interests of the actual people
and roles involved in the endeavor of introducing an SOA.

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.1. The Enterprise Perspective
As described in Chapter 1, the main motivation for creating an SOA is the desire to
increase agility of the enterprise IT systems. In addition, SOAs offer benefits at several
levels, ranging from a reduction of technology dependence to a simplification of the
development process to an increase in flexibility and reusability of the business
infrastructure.

The ultimate goal of the additional reusability and flexibility provided by an SOA is the
Agile Enterprise, in which all processes and services are completely flexible and can be
rapidly created, configured, and rearranged as required by business experts without the
need for technical staff (see Figure 11-1). Among other things, this facilitates a superior
time-to-market for new business initiatives. This vision of an Agile Enterprise reconciles the
growing demands of a global and rapidly changing business environment with the
limitations of current technological and organizational infrastructures. Consequently, the
Agile Enterprise is not so much characterized by a fixed state of the enterprise but rather
by an ongoing change process within the enterprise.

Figure 11-1. SOAs and their benefits.

Several sources contribute to the pressure on enterprises to instigate ongoing changes.
Enterprises are continually forced to reinvent themselves by offering their customers new
or better services to stay ahead of or keep pace with competitors. In order to remain as
cost effective as possible, partners and suppliers must be regularly evaluated and, if need
or opportunity arises, substituted by alternatives offering better quality, prices, or
conditions. In addition, mergers and takeovers often require the integration of new
systems, applications, and processes into the enterprise's IT and business infrastructure.

However, as unrelenting as this pressure toward constant change is, it is often obstructed
by technological and organizational obstacles. For example, replacing a partner or supplier
might be straightforward in theory, but it could require major efforts in reality. These
efforts could involve a complete redevelopment of technical interfaces and a major
redesign of business processes. Similarly, integrating a newly merged or acquired
company's IT infrastructure and processes might call for a large-scale integration project.
In addition, although offering new or better services might be desirable from the business
perspective, it often proves to be technologically or organizationally infeasible. Typically,
this can arise for two reasons:

Too time consuming. In some cases, developing the desired functionality might take too
long to be of any use. For the introduction of a new product or service, there often is a
window of opportunity (time-to-market) that must not be missed.

Too resource intensive. In most cases, the main risk to feasibility is the cost incurred in
achieving the desired functionality. For example, replacing a supplier is only profitable if
the long- and short-term costs for doing so do not exceed the savings obtained by the
replacement.

For an enterprise to become an Agile Enterprise, it is therefore necessary to construct a
technological and organizational infrastructure guaranteeing as much flexibility as possible.
SOAs provide the means for achieving this flexibility by leveraging an appropriate
architecture. In the following subsections, we describe the benefits of introducing an SOA
at the level of the enterprise in detail.

11.1.1. AGILITY

One of the primary motivating factors for using SOAs is the potential increase of agility
they offer. In order to fully understand this benefit, we must identify the different levels at
which enterprise projects are threatened by complexity. Inevitably, complexity diminishes
the enterprise's agility. The following elements of complexity can be distinguished:

Technology. Technical products and solutions used in enterprise projects are usually
complex. Sometimes, they result from yearlong efforts to capture more and more
functionality and lean towards the baroque in size and manageability. Sometimes, they are
early versions of some new trend and bring with them all the teething problems of
immature technology such as the bad performance of XML parsers or incompatible SOAP
implementations in the early days of Web services. Consequently, technology used in
enterprise projects can have complex deployment and installation procedures that work
against smooth introductions. In particular, finding staff qualified for handling the
technology can be a major obstacle.

Business processes. Often less obvious but at least as critical as technological complexity
is complexity related to business processes. This complexity might be harder to grasp
because processes tend to be much less visible and concrete than specific software.
Ultimately, however, a complex business process results in a complex implementation.
Sometimes, it is only during the project or even during implementation that the real
complexity of the processes to be implemented becomes apparent.

Business functionality. Even if the basic elements of the business functionality are not
complex, they can become complex when considered in their entirety. Sometimes,
business functionality also contains conflicting elements due to different perspectives or
application contexts, which adds to the overall complexity. Let's consider, for example,
insurance products and tariffs. Each individual tariff is not particularly complex. However,
the various permutations of these tariffs can result in an extremely complex insurance
product portfolio.

Integration. Another source of complexity arises from the integration of applications. More
often than not, enterprise projects will use and combine functionality from existing
applications. Even if the individual applications are stable and well maintained, using them
in a new context and integrating them with other applications is generally a complex task.

Maintenance. After an application is launched and running, it might seem that complexity
is no longer an issue. However, maintenance of a complex system is far from trivial.
Usually, components must be updated regularly, such as when additional functionality has
been integrated or when new versions of software have been released. Such updates can
cause complex issues similar to those encountered during the initial integration of the
application.

Without an appropriate architecture, the risk of complexity preventing agility is very
serious because changes might be infeasible or so expensive that the costs exceed the
benefits. SOAs can help to significantly reduce complexity at all levels. This is of particular
importance for enterprises, given their need to become more agile in order to react as
quickly as possible to changing business environments and offer new services to
customers, suppliers, and partners that make a difference with respect to competition.
SOAs achieve their simplicity by the following means:

Decomposition. SOAs decompose large, complex systems into application frontends and
services.

Appropriate granularity. The granularity of services is well suited to gain a high-level
understanding of the entire system. Unlike other approaches, SOAs do not confuse
practitioners by presenting too much detail.

Decoupling from technology. SOAs can be well understood without in-depth knowledge
of technology.

Reuse. SOAs result in the high-level reuse of existing components. This streamlines the
code base and reduces complex redundancies.

Documentation. Due to the service contract, every service is well documented, which
adds to the comprehensibility of the SOA.

11.1.2. COST SAVINGS

We have already seen that agility and efficiency are the primary benefits of an SOA. This is
mainly due to the fact that a commercial organization's agility and efficiency should help
increase profit and aid in effecting savings. In this section, we discuss possible sources for
cost savings. In particular, in price-sensitive, low-margin, mature markets in which the
possibility of product innovations is rather limited, cost efficiency plays a key role. In these
markets, often the price of the product makes the difference and hence provides the
competitive advantage.

In general, we distinguish between direct (saving IT costs) and indirect contributions
(saving business costs).

11.1.2.1 Cost Savings at the Business Level

SOAs can help to reduce costs in the enterprise's core business. These cost savings are
largely related to the SOA's agility. There is a number of obvious examples:

Choosing the Cheapest Supplier. In low-margin markets, suppliers do not differ much.
Nevertheless, even the slightest difference might make for competitive advantage in the
long run. A major obstacle that can jeopardize the positive effect of constantly choosing
the cheapest supplier is the inability of IT to support these changes within reasonable time
and costs. An SOA solves a couple of issues that are related to a supplier change. Most
importantly, an SOA provides an easy-to-use integration infrastructure that reduces the
efforts for both business partners.

Streamlining Business Processes. SOAsparticularly process-enabled SOAs (see Chapter
6, "The Architectural Roadmap")are very well suited to support ever changing processes
(see Chapter 7, "SOA and Business Process Management"). This enables the enterprise to
make use of internal resources in the most efficient way. In traditional environments,
however, costly adoptions of existing applications typically prohibit rapid change of
business processes.

Improving Financial Reporting. Finally, SOAs contribute to more precise and up-to-date
financial reporting. Due to its ability to make different parts of the architecture share live
data, an SOA can enable financial reporting on the spot, which could mean that the most
important business data becomes available on a daily basis. As a result, management
decisions that were previously based on quarterly reports could be made more promptly,
and longer-term trends could be taken into account in day-to-day business.

It should be noted that the possibilities of cost savings enabled by SOAs are not limited to
the examples stated here.

11.1.2.2 IT Cost Savings

In principle, three major sources for IT cost savings can be distinguished:

Reduced project costs. In general, using an SOA in an enterprise project will
considerably reduce project costs because it allows for more efficient implementation and
deployment. However, for these cost savings to become effective, the SOA must be already
in place. In the introduction phase, overhead usually outweighs reductions. In this phase,
you must establish the fundamental development processes and put the technical
infrastructurethat is, the service bus and the service repositoryin place. However, you will
achieve lower costs at several levels, particularly with respect to resources needed for
updating or modifying code, integrating modules, and testing. One of the major benefits of
an SOA consists of its significant simplification of both design and configuration of business
processes. As a consequence, new business processes can be developed more simply, and
the expenditure for modifying or optimizing existing processes remains justifiable.

Reduced maintenance costs. You can significantly reduce the long-term cost of IT
systems by introducing an SOA. Due to the simplification of the application landscape, the
streamlining of the code base, and technology independence, future changes can be made
more easily. Maintenance efforts can be targeted to business functionality. Side effects can
be reduced, and comprehensibility can be increased due to a clear decomposition of the
application landscape in reasonable components (i.e., application frontends, services) and
an up-to-date documentation of the purpose and interface of these components (service
contract). A good example is the encapsulation of complexity covered in Chapter 8 with a
discussion on process integrity. Applying the recommendations of Chapter 8, you can make
an application fit for efficient and targeted maintenance by separating critical code sections
from less critical ones. The critical code sections (encapsulated in distinct services) can
then be handled with special care.

Future proof solutions. Finally, correctly employing an SOA guarantees future proof
solutions. This is mainly due to three reasons. First, an SOA abstracts from the underlying
technology and is hence not tied to any idiosyncrasies or shortcomings. Thus, it can be
used in conjunction with other technologies, which is particularly useful in cases where the
underlying technology becomes obsolete. Second, an SOA guarantees protection of
investment because it enables you to integrate functionality from extant systems in an
enterprise instead of replacing them. The SOA endeavor creates a functional infrastructure
that can be reused in future scenarios independently of its original purpose.

Most of these benefits are more or less directly related to the high degree of reusability
provided by SOAs, which we will now discuss in more detail.

11.1.3. REUSE AND THE RESULTING BENEFITS

Reuse has long been a holy grail of the IT industry. The initial idea focused on reusing code
through class libraries or code templates. However, within an enterprise, code reuse often
has less far-reaching impact than the reuse of runtime components. Being able to reuse a
component at runtime by linking it into a number of different sub-systems means not only
that we are sharing a common code base, but more importantly that the different
sub-systems are now sharing the same application data. This significantly reduces
redundancies and inconsistencies in business data, which is a huge benefit.

It is important to point out that it is a key benefit of an SOA that it contributes to runtime
reuse.

The use of a service is not confined to the project for which it is initially developedit can
also be reused in other applications. This allows for a holistic IT strategy in which projects
are not separated activities but instead contribute to each other and can be combined to
achieve an overall synergy.

Moreover, usage is not tied to the technical infrastructure on which the service has been
deployed. The service interface provides an abstract layer that can be used in the context
of arbitrary technical infrastructures. Therefore, the service itself can be used in different
technological contexts that guarantee protection of investment.

Another major benefit of reusability concerns design, modification, and optimization of the
implemented business processes. When using an SOA, a business process can be
composed directly from services or individual service operations. On one hand, it is
possible to create a new servicethat is, an intermediary or process-centric service (see
Chapter 5, "Services as Building Blocks")simply by arranging or "choreographing" existing
building blocks. On the other hand, modifying or optimizing an existing service is also
straightforward because it only requires a rearrangement of the operations used in the
service.

Finally, reuse of existing code significantly reduces the risk of failure in enterprise projects.
Using proven components, that is, code that has already been in operational use,
eliminates time-consuming debugging and functional testing. It also enables the project to
proceed iteratively in small steps. Enterprise projects can start with a comparatively small
scope implementing the basic functionality. Based on this initial implementation, new
functionality can be added step by step, reusing the functionality that has already been
proven.

11.1.4. INDEPENDENCE FROM TECHNOLOGY

As previously stated, SOAsin particular the service contracts that describe servicesprovide
an abstraction from the underlying technology.

This independence offers several benefits for an enterprise. Most importantly, business
considerations can assume their natural role as the driving force for decisions.

Focus on technology can be a major problem in IT projects. This is not to say that
technology is irrelevant, but often, discussions about "the right technology" threaten to tie
up resources that could be better spent designing and optimizing business functionality.
SOAs help to shift the attention from technological issues to questions of service
functionality and service design. In other words, the question of which services to offer is
separated from the question of how to implement the services.

Independence from technology also increases independence from software vendors. The
opposite of a service-oriented approach can be caricatured as a project in which the
functionality and features of a particular software product or technology determine the
scope of the project. Applying an SOA enables choosing the best of breed products and
combining them as required by the particular application, not as stipulated by software
vendors.

However, contemporary application landscapes are characterized by a variety of different
incompatible technologies (e.g., J2EE versus .NET). This heterogeneity makes it particulary
hard to create and maintain cross-departmental business processes. Due to the tight
coupling of business functionality to specific technology, it can be arbitrarily difficult to
force different parts of the architecture to work together. SOAs mitigate these obstacles by
decoupling the technologies of the provider and consumer of specific business
functionality. SOAs do not eliminate the heterogeneity itself but rather its impact on agility
and efficiency. It is the very nature of big application landscapes to tend toward
heterogeneity. Fighting this heterogeneity is infeasible, and SOAs therefore embrace
heterogeneity as a given fact and cope with it in the best way possible.

Independence from underlying technology permits a decoupling of technology lifecycles
from the lifecycles of business services. Thus, the introduction of a new technology within
an enterprise does not require a makeover of the business processes and services.
Similarly, new business services can be introduced without the need to wait for new,
innovative technology to become mature, stable, and affordable.

Although an SOA provides a lot of technological independence, you will never completely
eliminate technology dependencies. In fact, every SOA requires a certain amount of
technical infrastructure (see Chapter 9, "Infrastructure of a Service Bus"). Distributed
logging and data transport are two prominent examples. However, if the SOA is properly
deployed, this technical infrastructure is largely encapsulated.

11.1.5. ADEQUATE BUSINESS INFRASTRUCTURE

The traditional IT infrastructure of enterprises is characterized by a strong focus on
technology and monolithic applications with fixed functionality. Technology, processes,
business rules, and core business logic as well as data are tightly coupled. These
applications are usually inflexible and can only serve as an appropriate business
infrastructure in their original context. Thus, as the business context of the enterprise
evolves over time, these applications often do not keep up with the enterprise's business
strategy, which might have evolved in an entirely different direction.

SOAs, if applied correctly, can correct the mismatch between the demands of the
ever-changing business environment and the constraints imposed by a rigid IT
infrastructure. The business infrastructure of enterprises that implement an SOA will differ
from traditional infrastructures. Instead of carefully planning and executing large-scale
projects spanning several years, a step-by-step approach becomes feasible.

The scope of enterprise projects will thus become twofold: on one hand, projects will create
new services and functionality for immediate use, while on the other hand, the services
developed will later serve as building blocks for future projects. More importantly, SOAs
decouple technology, processes, business rules, and data. This implies that if one of these
becomes obsolete, the others can still remain in use.

Consequently, an SOA-enabled enterprise will create a sustainable business infrastructure
over time that consists of flexible building blocks that can be continually reused.

11.1.6. MORE EFFICIENT DEVELOPMENT PROCESS

Using an SOA in an enterprise project also impacts the development process considerably.
Chapter 13 will describe in detail how project management should be conceived when
applying an SOA. At this point, we concentrate on how an SOA can help to reduce the
complexity of the development process in general.

One obvious advantage of the contract-driven SOA approach is a natural relationship
between business-oriented project artifacts such as use case descriptions and technical
deliveries such as interfaces or even services. From the perspective of the development
process, the main benefit of using an SOA is that it allows for a high degree of modularity,
which in turn makes it possible to decouple the development process. Let us more closely
examine what this means.

First, it means that the services to be developed in an enterprise project can be
implemented independently of each other. By its very definition, a service is self-contained
and can be used autonomously. In other words, it is not implicitly tied to the environment
in which it has been implemented. If the service needs other services to perform correctly,
all these dependencies are explicitly modeled and implemented as service calls with
well-defined interfaces.

As a consequence, development teams in an SOA-based enterprise project can be
decoupled, such that each team is responsible for implementing a specific list of services.
Interaction between the teams is then reduced to a minimum, focusing mostly on the
agreement of service interfaces. However, the definition of interfaces is one of the main
development tasks in any development. An SOA provides a guideline for the interface
definition and simplifies the process of achieving them. Project management can focus on
managing small development teams and can employ efficient techniques not applicable for
large teams with highly interconnected tasks. The overhead of project management is
thereby significantly reduced.

A critical phase in most development projects is the integration of code developed by
different teams. Problems that had not been apparent when developing the individual
modules often surface in the integration phase. One major reason for the integration phase
becoming a bottleneck is the inability to separately test and debug code. Once again, the
SOA helps to reduce complexity in this respect because it enables the independent testing
of individual service operations to a certain degree.

11.1.7. EVOLUTIONARY APPROACH

SOAs can be distinguished from other architectures because they explicitly address many
of the enterprises' non-technical constraints. One of the most important constraints is
based on the fact that large organizations tend to evolve in small steps. The organization's
IT infrastructure should enable a similar evolution. There are several reasons for this:

Risk of failure. The most important reason is that IT systems are at the heart of modern
enterprises. They are in many respects mission-critical. On one hand, they enable the
enterprise to fulfil its obligations, while on the other, they are essential to conduct its
business. A major failure could lead to serious financial and operational consequences for
the corporation. This implies that any change to the enterprise IT systems must be
performed with great care.

Capacity of change. The rollout of new business functionality is not only a technical
problem but also a major challenge for the business organization. Every organization has a
limited capacity for change due to the need for training and the day-to-day adoption of
new business processes. In practice, a number of manual amendments to the electronic
processes must be carried out, and the time required for these adjustments must be taken
into consideration.

Involve stakeholders. In practice, you must convince key players and decision makers to
support an endeavor such as the rollout of new business functionality. It becomes
increasingly difficult to achieve this support when a large number of departments (or even
business units) is involved.

Feasibility. The size of a new piece of functionality is a major criterion in regard to its
feasibility. The bigger the piece, the more cross-dependencies there are to be considered.
You also have to involve more people in order to cover the range of functionality.

SOAs are particularly well suited to enable a step-by-step approach due to two major
characteristics.

First, SOAs enable an efficient decomposition of large segments of functionality into largely
decoupled components of manageable sizei.e., application frontends and services. A
project organization can directly follow this decomposition. Big projects that appear to be
too risky, too difficult to rollout in the business organization, or technically infeasible can
be broken down into subprojects that can individually be brought to success. Even if a
single subproject fails, there is no overall threat to the enterprise. Second, unlike other
architectures, SOAs are not tied to any specific technology. This enables an enterprise to
be very flexible while introducing new functionality. More importantly, SOAs can make
changes or amendments to technology and business functionality by treating them in an
independent manner.

However, the real world is even more complex. Endeavors such as the introduction of a
new architecture paradigm do not follow a long-term project plan. Instead, it is a fact that
the requirements of day-to-day business have a higher priority. This implies that the
introduction of an architecture will be more like an ongoing effort that accompanies the
major business projects. As discussed in Chapter 6, SOAs reflect this requirement by their
very nature. They enable an increase in both the scope of the SOA's technical foundation
and its "content"the business functionalityin small steps.

11.1.8. SOA ENABLES FEEDBACK AT DIFFERENT LEVELS

It is undisputed that the enterprise architecture impacts all levels of the enterprise's
organization with a variety of different stakeholders involved. It is therefore essential that
the enterprise architecture address the key needs of these stakeholders (we will discuss
the appropriate benefits from the perspective of the individual stakeholders in Section 11.2
.).

However, it is not only the architecture that impacts their stakeholdersit also works in
reverse, or at least it should. All stakeholders should be able to influence the architecture
in order to make the full range of knowledge of the entire enterprise available to create an
architecture in the best way possible. Many previous approaches have been
comprehensible only to IT experts and therefore do not reflect this essential requirement.
Consequently, only a few people have been able to contribute to the architecture, with the
effect that valuable knowledge has not been used to make decisions crucial for the entire
enterprise.

SOAs provide useful abstractions at different levels. They are not only comprehensible to IT
experts but also to representatives of the functional departments. This characteristic of an
SOA opens up vast knowledge from many people to contribute to its success and,
incidentally, enables the management of the IT and business departments to gain
appropriate influence on the main architectural decisions. It can also facilitate buy-in from
the department members consulted.

11.1.9. MITIGATING RISK

The risk-mitigating effect of an SOA is a key benefit. Depending on the concrete business
of an enterprise, this could even be the most important benefit of an SOA. According to the
Standish Group [Sta2001], the key reasons for problems in IT projects are:

• Weak specifications of project objectives

• Bad planning and estimating

• Inadequate project management methodologies

• New technology and insufficient senior staff on the teams

At a minimum, some key characteristics of an enterprise SOA can help to partially address
these issues in a number of ways.

Service documentation helps to clarify project objectives. The documentation of
business-oriented, coarse-grained services is an invaluable tool for project managers to
help close the gap between business requirements and technical specifications. Service
specifications not only represent a contract at the technical level, but also between
business and technology. This is a crucial part of the ongoing alignment of business and IT
objectives. It is critical to ensure that the high-level documentation of services is suitable
for the entire project team. Only then it ensures that the technology meets the business
objectives.

Service orientation leverages involvement of business departments. The concept of
the service contract enables the involvement of the business department. It enables
domain specialists to drive the development process, and by doing so, you can significantly
reduce the risk that the project outcome does not match business department
expectations.

Service orientation helps planning and resource estimation. The abstraction level at
which business services are designed (or at least should be) is exactly the right level of
granularity at which they can be used as a powerful tool for planning and estimating
project resource requirements and duration. Service-orientation helps to decompose large
and complex systems into manageable sub-systems, which can be more effectively
planned and estimated.

Service orientation can be leveraged at the project management level. Service
orientation is not a replacement for sound project management strategies, but when
incorporated into established project management methodologies, it can provide a
powerful complementary tool. The loosely coupled nature of SOAs supports
divide-and-conquer strategies. The decomposition of complex systems into manageable
services is an essential tool for effective project management strategies. Service
orientation enables you to roll out functionality in small steps, which dramatically reduces
project risks because potential problems can be identified early in the development
process. This is described in detail in the discussion of the thin-thread approach in Chapter
13.

SOAs facilitate the integration of existing and new functionalityindependent of the
underlying technology. This enables projects to reuse proven core functionality of
mission critical sub-systems, such as billing or invoicing. Relying on proven functionality
significantly contributes to risk reduction.

A well-managed SOA can reduce the need for senior technical staff. As SOAs support
simple yet flexible service components, which encapsulate the underlying technology of the
service implementations, SOAs can help to reduce the need for senior technical staff. The
decoupling of service components enables developers to stay in their respective technical
domains, such as Java or COBOL development. In order to achieve this, services must be
well designed and properly documented. In addition, the process for designing,
documenting, implementing and rolling out services must be standardized and
documented, too. SOAs do require senior technical staff for implementing this properly.
Chapter 12 describes the role of an SOA architecture board, which should be responsible
for these types of processes.

Finally, we must add that even failed projects can contribute to the business infrastructure
of the SOA by amending business services or service operations that can be reused in
future projects. As a consequence, the enterprise can benefit from at least a fraction of
failed project efforts in the long term.

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

11.2. The Personal Perspective
It should not be surprising that it is insufficient for an enterprise architecture such as an
SOA "just" to be beneficial to the enterprise in order to become a success. In practice, you
must also convince the individual stakeholders to support the SOA. More importantly, you
must enlist the key decision makers and domain experts.

An SOA certainly can provide tremendous advantages for the individual people involved in
the enterprise architecture. This section provides the most important arguments for an
SOA from the perspective of the different roles in an enterprise. This information will help
you "sell," the SOA to each individual in an organization, adopting each individual's role
and accommodating personal requirements. In particular, we consider the following roles:

• CEO

• CIO (department for IT strategy)

• Architect

• Project Manager

• Functional department

• Developer

• Vendor of standard software (sales or product management)

Table 11-1. CEO

Benefits Challenges

Agile Strategy

SOA helps businesses better react to
environments. IT does not limit business
strategy, but instead enhances it.

Short-Term Planning

The planning horizon can be reduced
drastically because SOA enables
step-by-step approaches.

Budget Reduction

The budget allocated to the IT
department for pure maintenance tasks
can be reduced and is, thus, freed for
business-oriented development projects.

Technology and Vendor
Independence

The dependency of business functionality
on the technological infrastructure is
reduced significantly as is dependence
on software vendors.

Make It Happen

Introducing an SOA means change. It
inevitably requires coping with some
resistance. A clear strategy and firm
commitment are needed to overcome this
resistance.

Initial Overhead

In its initial phase, the introduction of an
SOA creates overhead, for which it is
important to allocate a sufficient budget.

ROI Consideration

The benefit of the SOA must be quantified.

Reporting

Reporting to the board is a possible
requirement.

Table 11-2. CIO

Benefits Challenges

Independence from Technology

The dependency on the underlying
technology is reduced and planning
can be focused on business
requirements.

Positive Role of IT Department

With an SOA the IT department can
take the role of an enabler. Usually,
the introduction of an SOA moves
the IT department closer to the
business units.

Cost-Reduction

The CIO often has a cost-reduction
target agreement.

Increase of Influence

SOA enables the CIO to participate
in the decision process regarding
the architecture.

Manageable Project Size

An SOA enables small projects and
step-by-step development.

Migration to SOA

The existing IT infrastructure has to be migrated
towards an SOA.

Decoupling

Existing functionality has to be decoupled and
made available as services. This is far from
trivial.

Change of Attitude

Usually, a change of attitude is required within
the IT department when changing to a
service-oriented approach. Members of the IT
department must be convinced that an SOA is
beneficial for the enterprise as a whole and for
them as individuals.

Change of Relationships

Usually, relationships to suppliers of standard
software and infrastructure solution must be
reconsidered.

Table 11-3. Architect

Benefits Challenges

More Attractive Job

An SOA allows the architect to focus on more
interesting tasks.

Disentanglement

An SOA frees the architect from the entanglement
typical in monolithic IT infrastructures. This limits
the scope of architectural decisions and changes
them to become more manageable.

Loose Coupling

Architecture specification is simplified as the
degree of coupling is reduced significantly.

Code Reuse

Implemented functionality can be reused and need
not be coded over and over again.

SOA Adherence

Architects have to establish
structures and processes ensuring
SOA adherence.

Reuse

Architects have to make sure that
services are designed with reuse
in mind to fully leverage the
potential of a SOA.

Open-Minded

The architect must be
open-minded to amend and
change the SOA itself if needed.

Missing Technical Standards

The technical standardization of
SOA-related technologies is not
yet complete.

Table 11-4. Project Manager

Benefits Challenges

Smaller and Shorter Projects

Projects become smaller and shorter and
are, therefore, easier to manage.

Technology Independence

Projects are less dependent on the
underlying IT infrastructurei.e., planning
can focus on the functional aspects of the
project.

Parallel Development

Fixed service interfaces help to decouple
development and allow for parallel
development.

Reduced Project Risk

Due to project size and limited
technology dependency, project risk is
reduced significantly.

Easier Testing and Integration

The resources necessary for testing and
integration are reduced because of
decoupling.

Service-Orientation

Adherence of developers to the
serviceoriented approach must be ensured.

Potential Overhead

Reusability must be taken into account in
the design process. Sufficient budget
should be allocated to cover the potential
overhead this creates.

Table 11-5. Functional Department

Benefits Challenges

Independence from Technology

Dependency on the underlying IT
infrastructure is reduced so that business
departments can focus on functional
requirements.

Shorter Time to Market

Business departments can achieve a shorter
time to market for new functionality.

Reduction of Development Costs

The costs for developing new functionality
are significantly reduced.

Service Orientation

Business functionality has to be made
available as services. Service contracts
must be fixed and adhered to.

Reuse

Implemented services must be designed
with reuse in mind. This creates some
overhead.

Sharing of Responsibilities

Potential service users must be involved
in the design process and will have
influence on the service design.

Table 11-6. Software Developer

Benefits Challenges

More Attractive Jobs

An SOA allows the developer to focus
on more interesting tasks.

Reduction of Dependency

An SOA reduces dependencies. Within
a single service, developers can
change implementations without
affecting external functionality.

Rapid Prototyping

Once a substantial number of services
are available, developers can easily
test approaches.

Better Defined Requirements

The interface driven SOA-based
development process provides the
developers with better-defined
requirements.

Simplified Testing

Decoupling and service interfaces
simplify distributed testing.

Respect Service Interfaces

Developers have to adopt a service-oriented
approach. Service interfaces must be
respected. This in turn requires a clear
specification before coding.

Processes

Developers have to accept rigid processes.

Shared Responsibility

In particular for well-established developers it
might be a major change in responsibility for
an application because it must be shared
between different development teams.

Learning New Skills

Developers have to learn new skills regarding
the specifics of SOAs. This includes, for
example, the handling of distributed
transactions or the assignment of the
ownership of data.

Table 11-7. Vendor of Standard Software

Benefits Challenges

Sell Components

SOA opens up a new market segment for
standard software packages. Domain specific
services can become a great market.

Reduced Integration Costs

Unlike contemporary software packages SOA
components do not require high integration
costs on the customer side. Due to the lower
project costs and risks, it becomes much easier
to sell such components.

Low Entry Barrier

Regarding the limited scope of a single service
it becomes much easier to create sellable
standard software components.

Provide Future Proof Solution

Customers are increasingly demanding
SOA-compliant products.

Customer More Independent

A core characteristic of SOA is that it
disentangles dependencies and
makes enterprises independent of
specific components or technologies.

Limited Secondary Business

SOAs are not well suited to generate
much secondary business around
standard components. Integration
and migration efforts are particularly
low.

Missing Technical Standards

The technical standardization of SOA
technologies is not yet complete.

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

11.3. Conclusion
In this chapter, we explained the motivation for an SOA introduction and the main benefits
related to such an introduction. Many enterprises adopt an SOA in order to increase agility.
SOAs are seen as a means of breaking up inflexible IT infrastructures, which are usually
characterized by monolithic applications. The flexibility of an SOA, its modular and
decoupled development process, and in particular its potential for application reuse enable
enterprises to reduce their project risks and to achieve a faster time-to-market.

Obviously, SOAs are not a magic bullet, solving all problems of enterprise projects with a
single strike. Only if the environment is right can an SOA yield the maximum effect.
However, SOA does, if applied correctly, minimize the risks of enterprise IT by providing a
sound architectural basis.

Introducing an SOA will in general be a long-lasting process, and its beneficial effects will
become apparent not all at once but steadily during this process. Only at the end of the
process will the Agile Enterprise become a reality.

References

[Sta2001] Standish Group. Extreme Chaos.
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf, 2001.

URLs

http://www.de.cgey.com/servlet/PB/show/1004690/07.16.02%20Studie%20Web-Services
_G.pdf

http://www.standishgroup.com/

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.de.cgey.com/servlet/PB/show/1004690/07.16.02 Studie Web-Services_G.pdf
http://www.de.cgey.com/servlet/PB/show/1004690/07.16.02 Studie Web-Services_G.pdf
http://www.standishgroup.com/
http://www.processtext.com/abcchm.html
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.de.cgey.com/servlet/PB/show/1004690/07.16.02%20Studie%20Web-Services
http://www.standishgroup.com/
http://www.processtext.com/abcchm.html

Chapter 12. The Organizational SOA
Roadmap
This chapter describes the organizational aspects of introducing an SOA on the enterprise
level. We take a close look at the political aspects of SOAs, such as the obstacles that block
their successful adoption in an enterprise, and strategies and tactics to overcome these
obstacles. Because every enterprise is unique, there is no universal guide to cover all
eventualities in the course of an SOA introduction. However, certain patterns have emerged
that are sufficiently widespread for us to discuss on a generic level. This chapter discusses
these patterns and illustrates them with real-world examples of successful and
unsuccessful attempts to establish enterprise-wide standards.

It should be noted that much of this chapter's content is not SOA-specific but concerns the
general challenge of introducing new methodologies, or processes, at the enterprise level.
The presentation in this chapter will, therefore, oscillate between SOA-specific aspects and
generic aspects.

We start by providing a generic overview of the main stakeholders involved in managing an
organization's IT infrastructure in Section 12.1. Because these stakeholders are relevant for
all aspects of an IT strategy, they are also the main actors involved in the introduction of
an SOA. Consequently, Section 12.2 looks at the role that each of the different
stakeholders plays in the implementation of the roadmap to the service-enabled enterprise.
We discuss pillars for success in Section 12.3. Later, in Section 12.4, we describe an ideal
world for the introduction of an SOA, while in Section 12.5, we provide some real-world
examples of the introduction of SOAsdemonstrating both success and failure. In Section
12.6, we conclude with a series of recommendations for introducing an SOA into the
enterprise.

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.1. Stakeholders and Potential Conflicts of Interest
Before introducing SOAs at the enterprise level, we need to examine who the different
stakeholders in the SOA are within an enterprise and the potential conflicts of interest that
you must overcome to ensure a successful introduction of new technical standards and
architectures at the enterprise level.

Figure 12-1 provides an IT-centric view of key roles and relationships in an enterprise. The
CEO and the board of directors are responsible for high-level strategic decisions, which
often will have a direct impact on IT as well. Similarly, business units drive functional
requirements, and we can often observe that they present the IT department with
conflicting requirements because their interests are not necessarily aligned.

Figure 12-1. Enterprise hierarchy and potential conflicts.
[View full size image]

The CIO is often caught between these conflicting interests because investments in
infrastructure are often harder to justify to business people than concrete business
applications that have a measurable return on investment. CIOs thus need good
arguments to defend these investmentsbecause IT is typically a cross-sectional function, it
is limited by other business decisions. There is a number of major obstacles to investments
in IT infrastructure such as SOA, including:

• The difficulty of providing predictable and verifiable returns of the investment that
are plausible to the top management and other non-technical stakeholders

• Frequent changes in functional requirements and business strategy, which have a
direct impact on the IT strategy

• Divisional interests and the mentality gap between IT and operative units

• The "not invented here syndrome" often found in IT organizations

The return on investment (ROI) is a major key performance indicator (KPI) for the board to
approve major investments, including IT infrastructure expenses. This is typically a hard
sell for three reasons:

• The return of infrastructure investments materializes in higher process efficiency
and smaller future investments. However, many of today's controlling systems are
not able to attribute efficiency gains to the infrastructure measures, and you can
never be sure what your investments would have earned if you hadn't made the
major investment.

• IT infrastructure projects have a history of unfulfilled promises, so decision makers
are very critical to any kind of return calculation. For example, initiatives such as
CASE, EAI, or workflow management that claimed various measurable benefits often
failed to achieve them.

• Management often tends to favor short-term benefits over long-term investments.

After executives have made the most strategic decisions, it is up to the business units and
the related IT projects and departments to implement systems that meet business
requirements. The day-to-day interaction of business and IT people has traditionally been
difficult. Business people might have a hard time understanding why technical issues are
so complicated, while IT people often struggle with understanding not only certain
business decisions but also the actual business itself. You can often observe a "conceptual
gap" between the business and IT worlds. Typically, business requirements and the
underlying technologies are extremely complex and dynamic, requiring a large number of
specialists who have slightly different understandings of the environment and often
differing agendas and perspectives. External consultants (strategic, business, and IT
consultants) and product and service vendors with their own agendas add to this
complexity. All of this increases the difficulty of matching functional requirements to a
technology platform.

CIO and technology architecture boards often have different interests from individual
projects, and different business units might have different IT organizations with conflicting
interests as well. These conflicts can have various reasons. A good example is that of a
large retail bank (name withheld), which bought a small investment bank in the late
1990s. Whenever the global CIO tried to define a company-wide standard, for an
application server or a communication middleware for example, the CIO of the investment
bank found a reason to use a different technologymainly due to reasons of ego rather than
good technical reasons. These disagreements took place at the executive level. The global
CEO was prepared to allow the investment banking unit to take certain liberties and bought
into the investment bank CIO's argument that the investment business had very different
technical requirements from the retail bank. The results were incompatible systems,
increased project costs, and increased software license costs.

Technology and architecture boards aim, for example, to introduce standards that allow for
reuse of technology and applications. Project managers, on the other hand, often have a
bigger interest in getting their projects out the door instead of investing the time to
examine reusability. In these cases, it is often not a matter of reasonable decision-making
but rather a question of who has the power to enforce a particular course of action.

Similarly, project managers and operations managers can have conflicting interests. How
fast the project delivers certain business functionality often measures the success of a
project. Consequently, speed is the major concern of a project manager. Looking into the
Total Cost of Ownership (TCO) is the responsibility of an operations manager. The TCO is
largely determined by characteristics such as systems management integration, exception
handling, maintainability, and CPU resource consumption. Obviously, none of these
characteristics that contribute to a reduced TCO have any positive impact on project costs
or development time. On the contrary, all these characteristics require time and money
from a project point of view.

Finally, a word on the "not-invented-here" syndrome. A significant portion of IT projects
fail to deliver the required business functionality because they reinvent their own
middleware (the famous "let's just quickly build an object-relational wrapper" comes to
mind). There seems to be a tendency among IT people not to trust other people's
technology, which hinders the successful introduction of technology standards.
Furthermore, many IT people seem to feel more comfortable focusing on complex technical
concepts rather than on complex business logic, thus distracting them from the more
pressing issues at hand.

To conclude this discussion on stakeholders and conflicts of interest, it is necessary to
examine projects that cross enterprise boundaries, as depicted in Figure 12-2. After all,
this vision underlies many of the current trends in the development of enterprise
softwarean agile enterprise that is closely connected through technology and business with
suppliers, partners, and customers in a completely flexible manner.

Figure 12-2. Cross-enterprise processes dictate the complexity of
adjusting the IT infrastructure.

[View full size image]

This basically means that processes, structures, and standards developed to establish an
SOA within an enterprise ultimately also have to be applied to projects reaching across the
enterprise boundary. If it is already challenging to align all departments of an enterprise in
this respect, it is clear that problems are likely to proliferate if several enterprises are
involved.

However, the basic picture does not change much, regardless of whether different
departments or different enterprises are involved. One major distinction is the lack of a
well-defined hierarchy across organizations. If there is substantial disagreement among
different departments within an enterprise, the dispute can usually be resolved by a
management decision at the lowest hierarchical level responsible for both departments. In
these cases, commitment from top-level management is crucial to the success of an SOA.

If similar differences occur between departments of separate enterprises, though, there is
usually no common management level with the authority to resolve the issue.
Nevertheless, the establishment of clear processes and structures, such as boards
spanning several enterprises, is a good strategy for the minimization of potential
disagreements.

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

12.2. The Organizational SOA Roadmap
Having introduced the architectural roadmap in the first part of this book (for example, see
the different SOA expansion stages we discussed in Chapter 6), we will now take a closer
look at the organizational aspects of the SOA roadmap. Figure 12-3 provides a general
overview of this organizational roadmap.

Figure 12-3. The organizational SOA roadmap.

The first step on the organizational roadmap is problem recognition. In Chapter 1, we
provided a discussion of the reasons that lead to a phase of agony in the development of
enterprise software, manifested by a decrease in development productivity and general
inefficiency. If your organization is in this position, it is important to recognize this fact.
You will have to determine the reasons that the IT organization is in this situation and
discuss them with stakeholders before you can define a strategy for getting out of it.

Next, a number of key people have to get together and agree on the vision for the
enterprise IT renovation roadmap and which role an SOA will play in it. Often, it can make
sense to formulate a vision statement, which describes the ultimate goal, and how it
should be achieved. People from both the business and technology side should be involved
in formulating the vision. Although a visionary technology architect often drives such an
undertaking, it is equally important that business people who can validate the concepts of
the vision from the business point of view are included because they play a key role in the
development processes and boards that are required to set up an SOA (see Sections 12.3
and 12.4).

Having agreed on the vision, the next step is to define a plan that outlines how the goals
defined in the vision can be achieved. This will most likely not be a detailed project plan
including concrete details about implementation resources, and concrete delivery dates,
but more of a high-level roadmap document that highlights the key milestones to be
achieved. As we will outline in the next section, the four pillars of a successful enterprise
SOA strategy include budget, backers, a team, and a project to start with. These should be
included in the plan.

The development of this plan will most likely go hand in hand with the decision making
process, which will eventually lead to the go/no-go decision. Assuming a decision for the
execution of the plan is made, the typical next step is to start with a suitable pilot project,
as identified in the plan. The next section will provide more insights into the ideal
characteristics of this pilot.

Finally, it is important to realize that in order to successfully establish an SOA on the
enterprise level, you must constantly keep track of the project's status in order to fine-tune
and steer the overall strategy. The introduction of an SOA is not a once-off project but
instead requires constant efforts to ensure that future development projects will adhere to
the architectural principles of the SOA. As we discussed in Chapter 1, enterprise architects
constantly must fight the battle between tactical, short-term development and strategic
refactoring and architectural compliance (see Section 1.3 for more details). Thus, the
enterprise-wide rollout of the SOA should really be seen as an activity that runs in parallel
to the day-to-day project business of the IT organization, including as much motivation
work as technical guidance.

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.3. Four Pillars for Success
Although a wide variety of factors determines the success of an enterprise's SOA strategy,
four main pillars for success can be highlighted: securing a budget, choosing a suitable
project to start with, setting up a strong SOA team, and finding backers and buddies (see
Figure 12-4).

Figure 12-4. Four pillars of an SOA's success: budget, project, team,
and buddies.

12.3.1. BUDGET

Obviously, securing a budget is a sine qua non for any successful introduction of new
technology within an enterprise. For one thing, this budget will be needed to finance one or
more initial projects acting as pilot applications of the SOA. Because the success of these
projects will have a considerable impact on the (perceived) success of the overall SOA
introduction, they should be chosen with great care, as we will explain in detail later. It is
also crucial that they are equipped with sufficient budget to meet the challenges inherent
in the use of new technologies, methodologies, and processes.

In addition, a budget is needed to compensate for initial overheads caused by applying an
SOA. Such overheads are caused by different factors. For one thing, employees have to
familiarize themselves with new standards and processes. More important, however, is the
initial overhead caused by efforts required to increase reusability. Instead of merely
focusing on immediate requirements, potential future applications must be taken into
account to ensure that the implemented service is reusable.

Even if a business department is supportive of an SOA in principle, it might have problems
providing the resources needed to account for this overhead. In such a case, it is good to
have a budget available to cover the necessary resources.

12.3.2. INITIAL PROJECT

The second pillar is the choice of a suitable project piloting the implementation of the
enterprise SOA. [1] You must take into account several criteria to determine good candidates.
First, the chosen project should be as visible as possible. This does not necessarily mean
that it has to be particularly prestigious. On the contrary, choosing a less prestigious
project might be advantageous because it diminishes the immediate pressure during the
project's realization. However, the functionality provided by the implemented services
should be widely used in the enterprise. On one hand, this ensures that the results
achieved in the project will be highly visible. On the other hand, it will guarantee a
significant reuse potential of the implemented services, which in turn will contribute to the
validation of the benefits of the SOA and will help to sell it.

[1] Obviously, more than one project might be chosen to pilot the SOA. For ease of presentation, our discussion will focus on a single pilot
project.

Ideally, the project should run no longer than two or three years, with a first delivery after
six months. There should be a clear technological scope based on equally clear business
requirements. In fact, it is crucial that the project have a business focus with measurable
benefits instead of just being technology-driven. This not only concerns the project as a
whole but also holds true for the individual services developed in the project. The more
obvious the benefit of these services, the easier it will be to prove the SOA's ROI.

It is also a good idea to carefully evaluate the business department that will be responsible
for the realization of the pilot project. Ideally, it should be enthusiastic toward the SOA
idea, but at the very least, it should be open and positively biased. Otherwise, you risk too
much friction during the delivery of the pilot scheme, which might subsequently jeopardize
the entire SOA endeavor.

12.3.3. SOA TEAM

The third pillar is setting up a special SOA team. Such a team should focus exclusively on
how to best support and establish the SOA in the enterprise. Naturally, this includes first
and foremost the design and specification of overall architecture principles, standards, and
processes as well as the careful monitoring of the actual application of the SOA.

The SOA team will therefore have to contain evangelists whose task it is to explain the
benefits of the SOA to the different departments of the enterprise. This includes education
on the fundamental standards and processes making up the SOA, as well as support in the
actual implementation of these principles. The SOA team will also play an important role in
setting up organizational structures within the enterprise to monitor the "correct"
application of the SOA.

12.3.4. BACKERS

Finally, the fourth pillar consists of having backers and buddies. This is important at all
levels, beginning with active support by top management. It is crucial to acquire budget
approval and sufficient enterprise-wide awareness to get the SOA off the ground. This
support will also come in handy should there be substantial opposition to the SOA as a
whole or to some of the various processes and standards necessary to establish it. It is
therefore important for top management to explicitly include the SOA in the strategy
planning, covering a three- to five-year perspective.

Equally important is the backing of the key business departments. After all,
business-driven projects will implement and use service functionality. If the departments
providing and consuming the business functionality are not supportive of the SOA, it will
be next to impossible to successfully establish it. Furthermore, while an SOA is not
primarily a technical issue, it is infeasible to implement it without assistance from key IT
management and staff.

You should always keep in mind that backers have their own interests and that they have
to sell the SOA to others. In order to successfully introduce an SOA, it is therefore crucial
to have arguments for various target groups, for example in the form of fact sheets or
elevator pitches (see Chapter 11, "Motivation and Benefits"). On one hand, these pitches
should be used to convince relevant actors in the enterprise to become supporters. On the
other hand, they should be made available to supporters to facilitate their own selling of
the SOA to others. The easier it is for backers to sell the SOA, the more likely it is that they
will support it.

Thus, before approaching potential supporters, the following questions should be carefully
answered:

• Who are the target groups and key actors?

• What are the three main arguments for and against an SOA (per target group/key
actor)?

• Whose support will be likely?

• Who is to be convinced or overruled?

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.4. An Ideal World
In the previous section, we discussed four pillars for ensuring the successful introduction of
an enterprise's SOA. In this section, we will describe in more detail those structures and
processes that should be established to achieve success. In doing so, we will draw the rosy
picture of an ideal world. Subsequent sections will deal with the intricacies you will
encounter in real-world scenarios.

12.4.1. STRUCTURES AND PROCESSES

A number of building blocks are useful for the successful introduction of any new
enterprise-wide technology or methodology, namely:

• Whitepapers

• SOA board

• Multi-project management

• Standard processes

• Support of all actors

The following paragraphs will describe these generic building blocks in more detail. We will
then address issues that are specific to the introduction of an SOA.

Whitepapers are a good medium for describing basic principles and should be used to
manage the "why" and "how" issues. Ideally, there should be several whitepapers, each
dealing with a particular aspect of the SOA (see Figure 12-5). A strategy whitepaper
should explain the overall goal of the enterprise's SOA and its perspective over the next
three to five years. Aspects to be addressed include, for example, integration with the
existing infrastructure, the main business drivers behind the architecture, and the potential
for integration across enterprise boundaries, such as with suppliers, partners, and
customers.

Figure 12-5. Whitepapers must address various target groups.

A business whitepaper should focus on the business benefits expected from the
introduction of an SOA. Ideally, it should contain a business case including predictions
concerning the ROI. It should at least demonstrate the benefits of an increased reuse of
implemented business functionality and the potential for the efficient development of new
services for customers, employees, and partners. It could also highlight those aspects of
business functionality that are ideally suited to reusability.

Finally, a technology whitepaper should address the technological issues involved in
implementing the SOA. On one hand, it should explain in detail how integration of the SOA
with the existing technological infrastructure is envisaged, in particular concerning issues
such as asynchronous messaging or transactional behavior. On the other hand, it should
describe details of the technological realization of the SOA itself. In many cases, a special
platform will be used or developed to realize the technical infrastructure of the SOAthe
service busand a technical whitepaper is a good place to specify the scope of such a
platform and a roadmap for its implementation.

The repository is one of the key ingredients of an SOA, and it will be highly visible when
services are available. The technical whitepaper should describe the repository structure in
addition to processes for using and enhancing it.

Whitepapers are a good starting point for disseminating information about a new
technology or methodology in an enterprise. However, as they are merely papers, their
power is rather limited. What is definitely needed is an organizational entity responsible for
making a technological vision work in everyday life. One way of achieving this is to
establish a dedicated SOA board, which is responsible for the promotion of the SOA idea
and the monitoring of its application in actual projects (see Figure 12-6).

Figure 12-6. The SOA board drives the processes and establishes the
overall standards of the SOA in the enterprise's organization.

Multi-project management is required to coordinate the development of the general SOA as
a generic IT strategy, in its potential as a specific technology platform, and the individual
projects implementing SOA-based business functionality.

Because reuse is one of the fundamental characteristics and benefits of an SOA, the scope
of a pilot project will usually have impact on other pilot projects, too. When changing
project plans, such as by postponing the implementation of a service, you must therefore
examine how your choice affects other projects that might rely on the timely provisioning
of the service in question.

Figure 12-7 shows an example of how individual projects and the development of the
SOA's infrastructure can be dependent. In this example, we assume that there is a single
ongoing effort to create the initial SOA infrastructure and develop the amendments that
are required by the business projects that run in parallel. We assume that the project "Pilot
1" is rolled out in two steps. Each of these steps requires certain functionality of the SOA
infrastructure. Step 1 might comprise the integration of synchronously coupled frontends,
while step 2 might require asynchronous backend integration. The ongoing development of
the necessary infrastructure must therefore deliver the appropriate functionality in a timely
manner in order to enable the rollout schedule of this project. In addition, other concurrent
business projects might also require amendments to the SOA infrastructure. In our
example, there is a project "Pilot 2," which is also rolled out in several steps. The last step
might require asynchronous back-end integration similar to the second rollout step of "Pilot
1." Consequently, the projects "Pilot 1" and "Pilot 2" and the SOA development cannot be
considered separately. Instead, multi-project management is required. Due to these
dependencies, budgets must be steered not only individually but also in the context of a
multi-project program.

Figure 12-7. SOA pilot projects require multi-project management.

The detailed specification of standard processes and procedures can help to significantly
reduce the amount of work for the SOA board. Such processes should define how new
application projects should proceed to make sure that the enterprise's SOA principles are
adhered to. In particular, it is useful to define a process for the development and design of
new services that also contains specific points at which the SOA board should be involved.

The process specification can be based on generic frameworks for the standardization of
processes, such as 6 Sigma or ISO 9000. This is very reasonable if these frameworks are
already in use within the enterprise. However, more lightweight approaches can also yield
the desired effects. The important factor is to ensure that the day-to-day activities applied
in designing and developing new applications or in executing projects in general comply
with the principles of the enterprise's SOA.

Finally, it is vital to include all relevant actors in the establishment and implementation of
the SOA. This includes management, the IT department(s), business departments, and
administrators. Ideally, all actors should actively and enthusiastically support the SOA, but
at least you should make sure that no actors oppose the SOA, either openly or covertly
through sabotage or lack of activity.

Representing all relevant actors in the SOA board and the standard processes is a good
starting point for ensuring their support, as is the constant communication with these
actors and continuous monitoring of their contribution to the SOA. It is also important to
appoint as board members only employees who are already well established in the
enterprise. You should avoid the temptation to choose "new people for a new technology."

12.4.2. SOA SPECIFICS

In the previous subsection, we presented rather generic building blocks that are useful for
introducing new methodologies and processes within an enterprise. This subsection
addresses more specific aspects relevant for the successful establishment of an
enterprise-wide SOA.

The most obvious starting point for standardization is the service contract used to describe
and specify services. Service contracts should be made available through a central
repository. In addition to the interface description, such as CORBA IDL (Interface Definition
Language), WSDL (Web Services Description Language), or a tailor-made XML format, the
service contracts should contain all information relevant for using the service in
applications. This usually includes preconditions for service usage, special cases, potential
errors, versioning information, and access rights.

It is important to make sure that the repository is broadly used and is the sole source of
information regarding services. Whenever new applications are designed and developed, it
should be sufficient to consult the service contracts in the repository to decide whether and
how existing services can be used to build the desired functionality. If it is necessary to
access additional information to make this decision, such as by interviewing service
developers, this additional information should be included in the repository.

Everyone on the team must perceive the repository as a useful tool, including
non-technical people. In addition to technical information, it should therefore contain
detailed descriptions of the services from the business perspective. Business experts need
such semantically rich descriptions to decide whether a service can be reusedthat is,
whether it does what a new application requires.

Finally, you need an appropriate tool to implement the repository. As we have already
briefly discussed in Chapter 4, various options for implementing a repository exist.
However, the particular technical solution is often not pivotal for the successful adoption of
the repository. Often, it is more important to carefully design and monitor the day-to-day
processes concerning the repository.

This brings us to the issue of policies. It is vital to establish a process to ensure firstly that
all service-worthy business logic is actually implemented as a service and secondly that
service reuse is maximized. In order to achieve this, policies must be set up to ensure that
the implementation of a service is not only tailored toward immediate requirements but
that it also takes into account potential future applications. A simple means of achieving
this is through a special technical or architectural board that reviews all proposed service
interfaces and contracts.

A dedicated architecture board should manage the repository and review service contracts,
which helps to ensure that these central artifacts find support across departments and
business units.

Moreover, there should be a well-defined process for the design and specification of new
applications. In particular, reuse of existing service functionality should be favored over
implementation of new service functionality, even if such a reuse requires a modification of
the original implementation. Again, such a process is best realized by involving a dedicated
technical or architectural board.

Finally, a bonus system rewarding successful SOA projects and people can provide
additional incentives to adhere to the enterprise's SOA principles and to apply them in
day-to-day routines. As with any bonus system, the main challenge is to define the criteria
used to evaluate success. The reuse factor of a service, that is, the number of consumers it
actually has, is a good candidate. In addition, the usage (number of times a service is
invoked) should be included in the equation.

Because money is ultimately one of the key factors both for people and the project,
financial bonuses for successful projects are one of the best incentives. This usually
requires clear target agreements with all key actors. In order to reward reusability,
business departments could, for example, receive retrospective funding for their
development projects after the developed services have actually been reused.

It should be clear that the setup of all these techniques and tools amounts to more or less
the establishment of an SOA organization within the enterprise. This chapter will conclude
with a real-world perspective on politics and strategies.

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.5. The Real WorldOrganization-Wide Standards
This section presents some examples from the real world. We begin with an example of the
failed introduction of a platform project, and afterwards, we summarize the positive
aspects of two of the use cases presented in detail in Part III of this book. We conclude
with a summary of the lessons learned from these real-word examples and a brief sketch
as to how to deal with standards spanning several enterprises.

12.5.1. AN EXAMPLE OF FAILURE

The example in this subsection is based on real-world experiences in a platform
development project of a large corporation. We will use the arbitrary acronym COLOSS in
the following to refer to this project and the platform itself. [2] COLOSS is realistic example of
a failed introduction of a new technology and offers instructive insights into the challenges
and pitfalls of such an undertaking.

[2] There is definitely no connection to the EU project in the 5th framework bearing the same name, or any other projects named COLOSS
that we are not aware of.

We would like to point out that although the following description is based on a single
project, it is in no way unique. Many of the problems described here are typical for
large-scale projects introducing or applying new innovative technology. [3]

[3] In fact, we expect many readers to immediately notice parallels between COLOSS and their own experiences with similar projects.

The main purpose of the COLOSS platform was to provide host functionality in a
standardized way, such that arbitrary frontend and mid-tier applications could easily use
this functionality. The following is a brief description of the results:

Launch postponed. Initially, the project was supposed to deliver a first version of the
platform after three years. This is already a considerable time frame, even for a strategic
development project. However, when the platform was not "finished" after the initial
three-year period, its launch was postponed several times, until after five years it became
apparent that the whole endeavor was seriously flawed.

Scope creep. During the project, more and more functionality was assigned to or claimed
by the platform. This particularly included functionality for session management, security,
and transactional behavior.

Obsolete technology. Due to the long project duration and the additional delay, the
technology used in the project became more and more obsolete.

As a consequence, support for the COLOSS platform crumbled. Whereas in the beginning,
the platform was envisaged as a significant step forward that would considerably facilitate
development of new applications, it was seen as more and more of a bottleneck
threatening all development projects in the enterprise.

For example, projects began to devise workarounds that would access host functionality
the "traditional" way because it was unclear whether COLOSS could provide the
corresponding functionality on time. Similarly, projects developed their own solution for
platform functionality such as transactions, security, session management, etc.

Instead of standardizing and facilitating the enterprise-wide development process and
fostering reuse, the failure of the COLOSS project caused an even more heterogeneous
infrastructure with many redundancies.

In hindsight, several lessons can be learned from this failure. You should bear in mind the
following key recommendations when introducing a platform based on new technology:

Avoid Technology Focus. Perhaps the most critical mistake of the COLOSS project was
that it was conceived as a technical platform development project that was not
immediately tied to any business project. Though this made sense from a conceptual
viewpoint, the IT focus caused a lack of synchronization between IT and business projects
and was also ultimately responsible for scope creep and the delayed launch.

Start Small. Instead of aiming at a fully developed platform providing a high degree of
functionality, it would have been more reasonable to start with a small prototype offering
limited functionality. First, such a prototype would have been finished after a smaller time
span. Second, it would have been possible to combine this prototype with a specific
business project, allowing for immediate evaluation.

The next section will present some positive examples from the real world, which contrast
pleasantly with the failings described in this section.

12.5.2. TWO SUCCESS STORIESSOAS AT CREDIT SUISSE AND
WINTERTHUR

In this section, we briefly cover the SOA introductions at Credit Suisse and Winterthur,
which will be described in detail in the respective case studies in Part III. Credit Suisse
Group is a leading global financial services company headquartered in Zurich. Founded in
1856, the company operates in over 50 countries with around 64,000 staff members.
Winterthur Group is a leading Swiss insurance company providing a broad range of
property and liability insurance products. Winterthur Group has approximately 23,000
employees worldwide.

For the moment, we will concentrate on the main characteristics that helped to make the
SOA introductions a success. Interestingly, the purpose and intended functionality of these
SOA introductions are quite similar to the COLOSS project. The main focus is on making
existing host functionality available in a standardized way so that it can be efficiently used
by newly developed business applications.

Probably the most striking difference from the COLOSS project is that both Credit Suisse
and Winterthur adopted a type of bottom-up approach. Instead of first developing a
complete platform, which would then be utilized in concrete business applications, platform
development was accompanied and even driven by small pilot projects.

This approach helped prevent isolation of the platform development and kept the focus
balanced between business needs and technological features. It also facilitated the quick
gathering of experience and the adoption of the SOA strategy accordingly.

Moreover, this approach was emphasized by the fact that both Credit Suisse and
Winterthur focused on SOA as a general philosophy so that the platform used to implement
it was only seen as one of several ingredients, albeit an important one. From the
beginning, great care was taken to establish structures and processes supporting the SOA
introduction. In particular, dedicated teams were set up whose members acted as
evangelists, educating business departments and development teams of application
projects using the SOA.

Both groups also allocated a sufficient budget to the pilot projects and to the SOA teams.
This enabled the SOA teams, for example, to compensate the business departments for the
overhead caused by aligning the pilot projects with the SOA philosophy, such as adopting
reusability considerations.

Finally, special boards monitored compliance with the enterprise-wide SOA standards and
"enforced" reusability of the developed services. These boards include representatives from
different business departments together with those of the IT department. This yielded
several positive effects. First and foremost, it guaranteed a basic level of transparency and
visibility from the very beginning. Business departments that were not yet developing or
using the new services were already involved in the design process to ensure reusability.
As a side effect, these departments obtained information about the progress and benefits
of the SOA.

This process also helped to avoid the creeping emergence of diffuse fears. Staff and
departments not involved in the development of a new silver bullet that is supposed to
change the whole enterprise inevitably start to worry about their own place in the
enterprise's future. If this development takes place not behind closed doors but openly
instead, risks of sabotage and hidden or open opposition should hopefully diminish
drastically.

Due to careful planning and execution, the SOA introductions at Winterthur and Credit
Suisse received widespread recognition across the enterprise. The respective SOAs are
seen as a success, and departments contribute actively and apply the SOA principles in
their day-to-day routines. They do so not only because these principles are mandatory but
also because they can see the associated benefits for their own activities in addition to the
enterprise as a whole.

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

12.6. Recommendations for the SOA Protagonist
This section contains major recommendations for the SOA protagonist regarding politics
and tactics of SOA introduction.

Solid foundation. We identified four main pillars for success, namely securing a budget,
selecting adequate pilot projects, building a team, and finding backers and buddies.

Establish processes, structures, and standards. In order to make sure that the SOA is
not just a nice concept written on paper, processes, structures, and standards must be
established. It is well known that there is a major difference between theory and practice.
Even if employees or departments are fully supportive of the SOA idea, they might
disregard its principles in their day-to-day routines for several reasons, such as a lack of
resources to cope with the overhead caused by the SOA, a lack of support for the project,
or simply the reluctance to familiarize oneself with the details. It is vital to make sure that
the SOA principles are not just laid down on paper but are actually applied in daily
practice.

Enforce substantial change. In some cases, new methodologies and technologies are
introduced in an enterprise without any real change happening. Everything remains the
same, except that new labels are used to describe what is done"Yes, of course, all the
functionality developed in our application projects is now service-oriented." For an SOA to
become effective and more than a void bubble, it must contain substance. Only if it has an
impact on existing structures and processes, such as by transforming or extending them,
will it yield benefits.

Ensure business involvement. Although SOAs are not primarily about technology,
technology issues can become too dominant in the SOA introduction, especially if a
dedicated platform is to be developed as a basis for the SOA. Ensuring business
involvement is therefore crucial from the very beginning. Projects should be driven by
business needs and should yield measurable business benefits.

Focus. It is important to have a clear focus when introducing an SOA and to concentrate
on feasible achievement and reasonable time frames. This ensures early visibility of
benefits and minimizes the risks of individual projects failing and thereby endangering the
overall SOA introduction.

Evangelize. The SOA introductions should be permanently accompanied by evangelistic
activities, such as coaching, training, education programs, and whitepapers.

Cope with open or concealed opposition. Inevitably, not everyone in the enterprise will
be thrilled by the prospect of an SOA. Single employees or whole departments might
openly or secretly oppose the introduction of an SOA. Reasons for such opposition can be
manifold. They could be rooted in a general dread of change regardless of its concrete
nature, or they could be related to a specific fear of losing influence and/or control. It is
important to constantly watch for signs of open or concealed opposition and deal with it
adequately. In this context, it is extremely important to precisely understand the
motivation of the other stakeholders and provide offerings that are actually perceived
positively. If the fear of coping with change is the greatest concern, coaching or training
can mitigate the opposition. If the key problem is about losing influence, it could also be
helpful to integrate people into the SOA processes and give them appropriate responsibility
to contribute to the SOA success.

Compensate overhead. A particular aspect that is easily overlooked is the fact that
applying an SOA will create an initial overhead. This overhead must be taken into account
in the budget.

Ensure visibility. In order to firmly entrench the SOA in the enterprise, high visibility
should be ensured, such as by involving all relevant actors in the processes and by
implementing widely used functionality as services in the pilot projects.

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

12.7. Conclusion
In this chapter, we examined the political and strategic aspects of an SOA introduction. We
pointed out that introducing an SOA is a complex endeavor that can only succeed if it is
handled professionally and with adequate focus. It usually takes several years before an
SOA is really established within an enterprise.

The real-world examples have illustrated the most common challenges encountered when
introducing an SOA and some suitable methods to successfully deal with them. However,
SOAs address the concurrent trend towards aligning IT with overall business goals. The
service-enabled enterprise facilitates more efficient SLAs between IT and the business
organization, and thus IT is increasingly "being brought into the fold."

URLs

http://www.isixsigma.com

http://www.iso.ch

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.isixsigma.com
http://www.iso.ch
http://www.processtext.com/abcchm.html
http://www.isixsigma.com
http://www.iso.ch
http://www.processtext.com/abcchm.html

Chapter 13. SOA-Driven Project
Management
Modern project management methodologies have an interesting and eventful history. One
of the earliest projects that adopted rigorous project management processes was the
Manhattan Project in the 1940s, in which the United States developed the first nuclear
weapon, a massive research and engineering undertaking [Gro83]. In the 1970s,
practitioners in industries such as defense and construction started to adopt project
management methodologies. The 1990s saw a migration toward project management
methodologies, starting with TQM in the mid-80s, process reengineering in the early '90s,
risk management and project offices in the late '90s, and the currently ongoing wave of
mergers, acquisitions, and global projects of the new century.

Some of the generic project management practices and tools are directly applicable to
software development. Gantt charts and network diagrams are frequently used not only in
construction industry projects but also in software projects. Generic project management
standards such as PRINCE 2 address organization, plans, controls, stages, risk
management, and quality, configuration, and change control, all of which also apply to any
software project. Today, a wide variety of project management methodologies address the
specifics of software development projects, ranging from the simple and widely used
waterfall model to sophisticated, iterative models such as Rational Unified Process or
Catalysis.

As in the remainder of this book, this chapter is based on the assumption that the projects
we are looking at are related to enterprise architectures, including packaged applications
and bespoke software, with complex dependencies and integration requirements.

In this chapter, we limit the discussion of generic software development project
management methodologies to a brief introduction. Our focus is on understanding how
aspects of SOA can be used in the context of some of these established project
management methodologies in a complementary manner. We introduce the concept of
SOA-driven project management, configuration management, and testing from the
perspective of the project manager.

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.1. Established Project Management Methodologies
Like any engineering, manufacturing, or product development project, a software project
must cope with the conflicting requirements of time, resources, and functionality. However,
software projects are often somewhat special in that they exhibit a number of problems not
normally found in other industries. In particular, enterprise software is tightly coupled with
the internal organization, processes, and business model of the enterprise, as we discussed
in Chapter 1. Naturally, this means that the interfaces between enterprise software and
human users have a much higher complexity than interfaces between human users and
other types of complex technologies.

Take, for example, a sports car with an extremely sophisticated engine, anti-sliding
system, and exhaust reduction systemat the end of the day, the interfaces exposed to the
user are relatively simple: the user controls the technology through the use of the steering
wheel and brakes and is typically not aware of the highly complex technology hidden under
the hood.

Compare this, for example, to a software system such as a CRM system or an ERP package.
Such a system requires much more complex user interfaces, and interaction with such a
software package is much more direct and frequent in the day-to-day business of the end
user. Thus, enterprise software projects usually require much tighter interaction with
customers during the development phaseafter all, it is the customer's business that we are
modeling one-to-one, with all the corresponding details, day-to-day operational processes,
and special cases.

Unfortunately, enterprise software projects very often suffer from the I can't tell you what I
want, but I will recognize it when I see it phenomenon. Early project management
methodologies that were developed specifically for software development projects where
not able to cope with this issue. Most notably, the popular waterfall development model
implicitly assumes that customer requirements are fixed at the beginning of the projects
and that changes to these requirements are the exception, not the norm. The phases of the
waterfall model include requirements specification, high-level and detailed design, coding,
module and integration testing, and acceptance testing. The waterfall model is based on
full documentation at the completion of each phase, which must be formally approved
before the next phase is entered. The final delivery is one monolithic result.

Because of the limitations of this approachin particular the inability of the waterfall model
to cope with unstable requirementsa number of more evolutionary approaches for software
project management have emerged over the past 20 years. These more incremental or
iterative models are built on a philosophy of interaction and change, which is much better
suited for coping with unstable functional requirements. These models are typically based
on frequent releases, which are used as the basis for getting early and continuous
customer feedback. Instead of delivering the first work result after months or even years
(as in the waterfall model), the iterations of these evolutionary approaches typically last
only a few weeks (or even days).

An early representative of these development processes was James Martin's Rapid
Application Development (RAD), which is based on incremental stages. Each increment
represents a short-duration waterfall. Barry Boehm developed one of the first fully
evolutionary models, widely known as the Spiral Model, which is based on a set of full
development cycles that continually refine the knowledge about the final product and help
control project risks.

A number of very complex and sophisticated development process models have been
commercialized in the past decade. Most of these models are based on an iterative
approach in combination with some form of object-orientation, such as using UML as a
formal modeling language. Probably the most prominent representative of this class of
development processes is the Rational Unified Process (RUP), which is now owned by IBM.
RUP is iterative, depends heavily on visualization through UML, and uses component-based
architectures. In the same arena of relatively heavyweight iterative development
processes, we would also find Dynamic Systems Development Method (DSDM), Microsoft
Solution Framework (MSF), and Catalysis.

In the wake of the fast-moving Internet revolution of the late 1990s, a number of
approaches emerged that took a much more lightweight approach to iterative software
development, often referred to as agile development. In 2001, several representatives of
this school of thought issued the Manifesto for Agile Software Development. [1] A prominent
representative of these new lightweight methodologies is Extreme Programming (XP),
which heavily relies on peer programming (i.e., two developers jointly working on a piece
of code based on user stories, one focusing on the coding, the other on the design and
testing of what is being developed) and write-test-cases-before-writing-the-actual-code.
With XP, all new code is immediately integrated, and comprehensive test runs are
executed every couple of hours.

[1] www.agilemanifesto.org

Robert Martin's dX method aims at covering the middle ground between heavyweight
methodologies such as RUP and lightweight methodologies such as XP. dX is a minimal
implementation of RUP, based on index cards, an amalgamation of use cases and CRC
cards (Class-Responsibility-Collaboration). Figure 13-1 provides an overview of some of the
existing methodologies and how they relate to each other.

Figure 13-1. Different project management methodologies cover a
variety of different requirements. They range from lightweight to

heavyweight approaches and from linear to iterative models.

Add Service Orientation to Your Favorite Project Management
Methodology

All of these methodologies have their strengths and weaknesses, and their
suitability heavily depends on the project contextincluding scope, complexity,
and duration of the project, quality requirements, strategic importance,
resources available, stakeholders involved, and so forth. This makes it difficult, if
not impossible, to give generic recommendations for the right approach. Your
methodology choice will depend on your own experience and established best
practices. However, given the complex nature and frequently changing business
requirements that we find in the context of enterprise SOA projects, we assume
that the chosen approach will support iterative development, which is essential
for coping with complexity and unstable requirements. Given the strategic
importance of enterprise SOA projects, we expect the chosen methodology will
tend a little bit more toward the side of the heavyweight processes.

Nevertheless, it is important to realize that SOA-driven project management
does not require a new methodology. The proposals for incorporating aspects of
service orientation into your project management are based on the assumption
that you are choosing an established methodology, which will then be enhanced
to make use of service orientation on the project management level.

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.agilemanifesto.org
http://www.processtext.com/abcchm.html

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.2. SOA-Driven Project Management
As we said in the introduction, this chapter focuses on how service orientation can support project
management without inventing an entirely new project management methodology. Naturally, the level to
which SOA elements should be included in project management depends strongly on the expansion stage of
the SOAan organization that is already further down the road in terms of rolling out the SOA will in some
cases be able to benefit more from these concepts. However, even in the early stages, an organization can
benefit greatly from the concepts outlined in this chapter.

When looking at SOA-driven project management, it is important to recall that an SOA introduction happens
on many different levels within an enterprise:

Business projects versus IT projects. First of all, any SOA-driven project management will have to be
closely aligned with concurrently ongoing business projects, which are the source for any functional
requirements. A general theme throughout this book has been the close relationship of the services
developed for our SOA with concrete business functions. As outlined in Chapter 1 and consecutive chapters,
the services in an SOA are often a one-to-one mapping of a business entity such as a process or a
transaction. Thus, services are an ideal tool for coordinating business projects and IT projects, giving project
managers from both sides a perfect means for communicating and aligning business requirements and
technical implementation. Often, we find that multiple business projects will have an impact on an SOA
project and vice versa.

IT program versus IT project management. Next, on the IT level, we need to differentiate between the
management of individual IT projects and the management of multiple IT projects (program management).
In Section 12.4.1, we introduced the concept of an SOA board as a key tool for coordinating multiple projects
in a program. Section 12.2 provided an organizational roadmap and discussed how the different stakeholders
and influencers must be included on the program management level. Section 12.2.1 describes how SOA
artifacts can be used to control individual projects and sub-projects within them, as well as to coordinate
multiple projects on the program management level.

Business services versus SOA infrastructure. Finally, it is important to remember that an SOA
introduction has two architectural levels: the actual business services themselves and the required service
bus infrastructure, which enables different services and service consumers to interact with each other in a
controlled, secure, and reliable way. Chapter 6 outlined the different expansion stages of an SOA, including
fundamental, networked, and process-enabled SOAthe level to which an SOA can be leveraged for project
management purposes will depend on the expansion stage that the SOA has reached in the enterprise. If you
are in the early stages of SOA development, recall our suggestions in Section 12.5.1: Start small and avoid a
technical focus. In particular, if you are in the early stages of putting your SOA infrastructure in place, avoid
putting too much functionality into the initial platform. In addition, don't develop the platform on its own but
instead make sure that it is developed within the context of a concrete project, which ideally adds significant
business value. Chapter 9 introduced the concept of a "meta service bus," which can cater for adoption of
different technologies in an evolutionary way. Chapter 14 discusses a concrete case study from Credit Suisse,
outlining how the company introduced a synchronous information bus, an asynchronous event bus, and a file
transfer-based integration infrastructure driven by the demand from different projects, which in turn were
driven by concrete business demands.

As we will see, an SOA can help cut projects into more manageable pieces, which helps program and project
managers to coordinate concurrently ongoing business projects, IT application projects, and IT infrastructure
projects. Figure 13-2 again highlights the different levels of dependencies that an SOA can help to
coordinate.

Figure 13-2. SOA-driven program and project management contributes to the
coordination of business and IT projects. It also enables a stepwise extension of the
business infrastructure (deployed services) and the technical infrastructure (service

bus).

13.2.1. USE SOA ARTIFACTS AS PROJECT CONTROL ELEMENTS

A key issue in software project management has always been the mapping of project control elements (such
as tasks, work breakdown structures, etc.) and software artifacts (program code, data models, specifications,
and the complex relationships between all of these).

Individual lines of code are clearly too fine-grained to serve as meaningful project control elements. Modules
and object-oriented classes might be more suitable as control elements within individual tasks of a project.

However, the challenge of SOA-driven project management is usually not the management of individual
tasks, but rather the coordination of multiple concurrently executed projects and sub-projects. When looking
at the entire enterprise IT landscape, we are usually looking at the program management level, where a
program includes multiple projects. In some cases, this could even mean an application portfolio-based
management approach. On this level, modules and classes are not suitable as project control elements, due
to their fine level of granularity, as well as their technical orientation. Even within individual projects, we
usually find that modules and classes are not suitable as project control elements on the highest level for
similar reasons.

Services in an SOA, on the other hand, represent an ideal tool for decomposing complex systems into
manageable sub-systems. They are a powerful tool for controlling the state, integration, quality, and business
readiness of individual components and sub-systems. The reason for this is twofold: First of all, a
well-designed service provides the ideal level of granularity to be used as a project control element. Recall
our discussion on service granularity in Chapter 4, which stated that the granularity of a service should be on
the level of a meaningful business entity. Second, well-designed services in an SOA tend to be relatively
business-oriented (taking infrastructure services out of the equation for now). This makes services an ideal
communication tool not only between technical people but also between the non-technical people involved in
the project management. Even if we sometimes find modules or classes with a level of granularity similar to
that of services in an SOA, these APIs would usually still be fairly technology-oriented, thus lacking the
business orientation that is required on this level of project management.

Figure 13-3 provides an overview of the level of granularity of different types of software artifacts and how
they relate to different levels of project management.

Figure 13-3. Different levels of granularity of software artifacts at development time
and runtime.

Another factor plays an important role in enterprise-level software project management: Enterprise-level
applications almost always have to be synchronized not only during development time, but also during their
lifetime in a production environment. Introducing a new release of a sub-system into a production
environment must not have a negative impact on the other sub-systems. This means that we not only have
to ensure that the technical interfaces (service contracts) between the different components in the
production system are in synch, but also that data and expected behavior are compatible. For example, the
restructuring of a naming service will not change and interface definitions but will require changing the
configuration of those clients that have been configured to use the old structure. Coordinating the runtime
compatibility of different sub-systems is a hugely complex task.

Again, services are ideally suited for managing runtime synchronization of sub-systems. As depicted in the
Figure 13-3, development time services match to service instances at runtime. As we can also see in this
figure, services present something like the top-level abstraction layer for development time artifacts, as well
as the bottom-level abstraction layer for runtime artifacts. This makes services ideally suited for managing
the difficult region between development time and runtime synchronization.

Figure 13-4 shows how service contracts (managed in a shared, centralized service repository) can support
an SOA board (see Chapter 12) by providing the backbone for coordinating multiple projects on the program
level (or, alternatively, coordinating multiple sub-projects on the project level).

Figure 13-4. The SOA board utilizes service contracts in order to coordinate multiple
projects.

Make Your Service Contracts Drive the Projects

Services have the ideal level of granularity and business orientation to serve as the basis for
driving many important aspects of your project, including:

• Project cost and time estimation

• Project iteration and development planning

• Project synchronization

• Project test and rollout planning

In order to successfully leverage the potential that services provide as a key driving force of your
projects, you must ensure that you have the right level of political support. Ideally, you should
install an SOA board or a similar kind of institution that can control and push the use of services
as a project management tool. It will also be responsible for the synchronization of services that
are shared by different projects or sub-projects.

13.2.2. INCLUDE SERVICE DESIGNS IN THE PROJECT DEFINITION

Because services are a fundamental tool for structuring not only your architecture but also your project plan,
it is only logical to demand that each project definition contain a high-level service design.

We often underestimate the importance of the project definition phase, making too many implicit
assumptions, including the answers to key questions such as "What is the scope of the project" or "What are
the priorities?" The project definition phase enables us to ask these basic yet important questions, define a
project vision, identify the major objectives and constraints, and so forth. In particular, the project definition
should enable the different stakeholdersfrom both the business and technology sideto develop and articulate
a shared vision. As we saw earlier, services are sufficiently coarse-grained and business-oriented to serve as
a perfect communication tool in this critical phase of the project.

The project definition should also contain an initial project plan, which defines the most important iterations
and increments. Again, services are a very good tool for defining these and also for discussing implicit and
explicit dependencies at this level.

In an SOA-driven project, the project definition should therefore always contain a first draft of the
architecture, including the most critical services that have to be developed or included. In a sense, these
early service definitions and architecture blueprints serve as a common denominator between the different
stakeholders and help in preventing unpleasant surprises during or after the project execution.

Include a First Service Design in the Project Definition

SOA project management must assure that a first draft of the architecture becomes a key
delivery of the project definition phase. You must already have identified the application
frontends, the external services, and the most important basic services. With regard to the basic
services, you must distinguish the following:

• New services built from scratch

• New services based on existing applications

• Extensions and modifications of existing services

The design of intermediary and process-centric services can be done later.

13.2.3. LEVERAGE SOA TO DECOMPOSE COMPLEX SYSTEMS

As with any large project or program, a key problem we must face in the early phase is the complexity of the
undertaking, which requires that we find good ways of decomposing systems into manageable parts.

The loosely coupled nature of an SOA is extremely well suited for this purpose. The following takes a closer
look at how to leverage the SOA approach for project and system decomposition and how to manage the
decomposed parts from a project management perspective.

13.2.3.1 Vertical Versus Horizontal Slicing

Most enterprise applications can be decomposed using two different approaches, based on either vertical or
horizontal slicing. A horizontal slice of a system usually presents a particular technical tier, such as the user
interface, presentation layer, business logic, middleware, data management, and so forth. Vertical slices, on
the other hand, represent specific business use cases, such as open account in a banking Web portal.

Sometimes, large projects are structured in a way where different teams are responsible for specific
horizontal slices of the systemfor example, one team does all the Web forms and graphics, one team does the
complete database schema, one team does the business logic, etc. (see Figure 13-5). This can often lead to
large integration overheads because each team is focusing only on its own specific layer, and there is a
general lack of people with a good overview of the relationship between the different horizontal slices.
Problems during development are potentially discovered only very late in the development cycle, usually the
moment when large pieces of work that have been executed in isolation within each horizontal layer need to
be integrated.

Figure 13-5. Whereas horizontal layers are technology driven, vertical slices are
driven by use casesthat is, business functionality.

When using horizontal slicing, developers with very different skills work hand-in-hand to deliver complete
end-to-end slices, from application frontend to business logic to the middleware and data layer. This
approach minimizes the integration overhead between components from the different horizontal layers of a
complex system. In the following section, we discuss the "thin thread" approach, which is based on vertical
slicing.

13.2.3.2 Thin Thread Model

The "thin thread" development and project management model is essentially an application of the Iterative
Application Development (IAD) approach, as described, for example, in the rational unified process. The "thin
thread" approach is specifically suited for IAD in the context of Service-Oriented Architectures.

A thread represents a vertical slice through the system, including an end-to-end implementation of a
particular piece of application logic, going from application frontend all the way down to the database.

The basic idea of the "thin thread" approach is to start with a very thin slice (or thread), which might, for
example, only comprise the functionality of capturing a single string value in the application frontend,
processing this information in the middle-tier, and writing it into the database. In the next phase, the thread
might be "thickened" by adding end-to-end functionality for retrieving the string value from the database
and displaying it in the application frontend. In a further iteration, a more complex data structure (e.g., a
customer record) might be handled in a similar way, and so on. As the project continues, additional threads
can be launched (see Figure 13-6).

Figure 13-6. The "thin thread model" proposes an iterative development
methodology. It is based on a simple process that starts with one piece of simple
functionality. This functionality (the thin thread) is iteratively either thickened or

complemented by additional thin threads.

Very often, the initial version of a thread might match an individual operation of a more complex service, and
the final iteration of the thread represents the full-blown service.

Most likely, the first iteration of a thread (especially if it is the first one in a new project) will be slow.
Problems will arise in the initial setup of the system (including session management, transaction handling,
middleware, data access, etc.) and in the development process, deployment, testing, performance, etc. The
next iteration will be considerably faster, though, because all end-to-end problems will have been addressed
in the first iteration. After the first couple of threads have been tried and tested, a more aggressive rollout of
threads can start, as depicted in Figure 13-7.

Figure 13-7. The number of concurrently active threads varies over time.
[View full size image]

Much of what is contained in this "thin thread" approach is obvious and common senseeffectively, it is a
combination of widely established iterative application development concepts with a consequent vertical
slicing approach on the architecture level. However, many projects struggle because they choose a horizontal
instead of vertical decomposition approach. In addition, experience has shown that giving this approach a
name (a "thread" denotes the basic work breakdown structure) and making it explicit in the project
management plan simplifies planning and prevents miscommunication.

Apply the Thin Thread Approach

A thin thread represents a fully functional part of the whole system spanning all layers of the
system from the frontend to the backend. The service contracts of the services involved in a thin
thread define the scope and drive the development and testing.

You should implement thin threads in order to enable (and enforce) a project to approach many
risks in a very early phase.

13.2.4. LEVERAGE SOA TO DRIVE DEVELOPMENT ITERATIONS

Service orientation is particularly well suited for supporting iterative application development, especially
when combined with what we described in the previous section as the "thin thread" approach, which is
effectively an iterative development approach based on vertical slices.

Because SOA is particularly aimed at enterprise-level development projects, we often find situations where
many projects (or sub-projects) are running in parallel often over long time periods. A key problem for such
long-running parallel projects is the stabilization of the development process, which is required to decouple
projects from each other, shielding each project from the dynamics of the other projects.

Traditionally, the elements that can stabilize a project are the user interface and data model. However, in a
distributed architecture with many layers between user interface and database, achieving stability in the top
and bottom layers is often not sufficient for achieving overall stability.

Service contracts are the ideal tool for stabilizing the development process in distributed architectures. They
are conceptually located between the user interface and the data model, and if we carefully control the
evolution of these contracts, we can greatly enhance the stability of the overall development process.
Effectively, projects and sub-projects should evolve in parallel to the service contracts they share.

We already discussed the loosely coupled nature of an SOA, referring largely to technical coupling. However,
an SOA provides benefits beyond this technical loose couplingan SOA also enables loose coupling of tasks in
a project. This reduction of dependencies between different tasks is directly related to the technical
independence of different services, and it greatly enhances the flexibility of project managers with respect to
the scheduling and coordination of different tasks. Effectively, although SOA does not eliminate dependencies
between different projects, it documents them and helps to address them in an organized way.

Use Service Contract Iterations as the "Heartbeat" of the Project

In a truly SOA-driven project, service contracts should be a key driver of the project.
Consequently, the iterations that these service contracts go through should represent the
"heartbeat" of the project.

The role of the SOA board is to control this "heartbeat." Effectively, this board becomes similar to
a conductor in a large orchestra, who is responsible for ensuring that each of the individual
orchestra members is properly synchronized with the rest of the orchestra.

13.2.4.1 Use SOA as the Basis for Divide & Conquer Strategies

In addition to the "vertical slicing" of the thin thread approach, you often need to further decompose tasks,
especially in phases where the initially "thin" threads start to "thicken"that is, a richer set of functionality is
associated with the individual threads under development.

In this case, it can often make sense to further decompose development tasks (i.e., threads) into "horizontal"
slices. However, notice that this should always be the second stepafter the initial "vertical" slicing. As
depicted in Figure 13-8, service contracts can help with the synchronization of this horizontal subdivision. We
discussed earlier that the biggest problem with a horizontal slicing approach is the integration of the
individual horizontal slices. In order to address this issue, service contracts should be leveraged as the key
sync point between the individual slices, such as the application frontend and backend services. Service
definitions are a result of the joint analysis and planning activities, which involve both sides of the service
contract. The jointly agreed upon service contract should be approved by the SOA board and captured in the
central, shared service repository. Based on the initial service contract (or its next iteration), both sides can
now independently start development and testing of their respective parts (frontend or backend).
Automatically generated test frontends and backends are an essential support tool for facilitating this
divide-and-conquer approach. Only after the different sides of the service contract have reached a reasonable
level of stability should they be deployed in a shared test environment, in which they can be integrated and
tested further.

Figure 13-8. The development cycles of SOA projects are driven by service
contracts, which are the major outcome of the activity "define service."

Of course, a lot of these divide-and-conquer principles have been successfully used in the past. However,
especially in distributed system development, where we often have complex infrastructures and project team
members with very different skill sets (e.g., Java GUI programmers and COBOL mainframe developers), it
would be helpful if these principles were adopted more often and if the appropriate support toolssuch as
automated frontend and backend test toolswere provided.

13.2.4.2 Use SOA to Manage Parallel Iterations

After service contracts have been established as the "heartbeat" that drives the overall project, it makes
sense to look at them as a tool for enabling parallel development as well.

As depicted in Figure 13-9, service contracts can serve as the basis for multiple service implementations that
are developed in parallel (application frontends #1#N and backend services #1#M in this example). As a
prerequisite, the underlying application scenarios #1#N will have to be analyzed, an iteration plan
developed, and the service contract defined. After this, the individual front-end and backend services can be
developed independently before they are eventually integrated.

Figure 13-9. The SOA approach makes both the synchronization points of
independent tasks and concurrent development efforts explicit.

Figure 13-10 shows how service contracts can serve as sync points, which help in coordinating the
development and integration of multiple application frontends and services.

Figure 13-10. An SOA project typically has to cope with many application frontends
and services developed in parallel.

Their granularity and business-orientation make services ideal candidates for the breakdown and parallel
execution of complex development tasks in distributed enterprise environments. This is an extremely
powerful feature of any SOA-driven project, especially if time to market is critical and large development
teams need to be synchronized.

13.2.5. TAKE A STEP-BY-STEP APPROACH TOWARD PROCESS INTEGRITY

To finish our discussion on SOA and iterative application development, we now look at transactionality and
process integrity. In Chapter 8, we introduced the concepts of process integrity and how they relate to data
integrity, transactions, and long-lived processes. A key discussion of that chapter was the tradeoff between
process integrity on one hand and related costs on the other. Achieving 100% process integrity is almost
impossible in most cases, unless we are prepared to spend the money usually required to build super-reliable
systems, such as redundant electronics in an airplane or a nuclear power plant control system. "Normal"
systems (such as an online banking portal, a stock trading system, or a telecom billing system) with
"normal" budgets will have to accept the fact that certain rare failure situations will lead to process
inconsistencies, which usually require human intervention to fix (e.g., through an DBMS administrator who is
uses an SQL console to go directly into the system and fix problems reported by end users).

However, in the real world this rarely presents a problem. Of course, it would be ideal if complex IT systems
were completely self-sufficient and no system administrators were required to fix data or process
inconsistencies caused by system failures. However, if the cost of building 100% reliable systems by far
outweighs the cost of employing system administrators, the latter solution seems acceptable.

The following describes a set of guidelines for introducing high levels of process consistency through an
evolutionary approach, which helps in minimizing the cost and complexity of the development:

• Avoid making the entire system transactional, e.g., through the use of distributed transaction
properties in every single service interface. Instead, build the system based on lightweight tracing and
recovery mechanisms.

• As a general rule of thumb, as long as we can trace a problem (or the history of a partially executed
process), we can always manually fix it. Chapter 9 provides more details on infrastructures for
distributed logging and tracing.

• Throughout the initial testing period and in the early launch phase, you will find out which services
and processes are particularly vulnerable to failureseither because failures occur frequently, or because
fixing process inconsistencies caused by them becomes very difficult. In the case of frequently
occurring failures, attempt to fix the problem at its root cause (i.e., analyze the problem and fix the
bug). In the case of particularly critical complex processes, analyze common or likely failure situations
(such as a disk crash) based on your experience with the evolving system and provide recovery
mechanisms that are specifically suited to fit the needs of these critical processes and failure
situations.

• You will quickly learn that the number of services or processes that require specific transaction or
recovery mechanisms will be extremely lowin almost all mission-critical systems, 8595% of system
functionality does not require advanced transaction or recovery functionality. This is because usually
only 515% of system functionality deals with modifications of mission-critical data (such as a money
transfer), while the rest of the functionality has read-only or purely administrative characteristics.

• In the early phases of deploying the system and gaining experience with the system's as well as the
end user's behavior, you will most likely require relatively high tracing levels in order to ensure that
you are not missing any critical information that might be required in order to step in after a potential
failure. As the user load increases, tracing overhead becomes a more limiting factor, but because at
the same time the system also matures and you gain experience with its runtime behavior, you will be
able to limit tracing to those parts of the system that you have identified as mission-critical.

This approach will enable you to identify the few really critical parts of your system in an evolutionary
msanner and focus on them specifically from a process integrity point of view (e.g., by migrating them onto a
more reliable transaction model). This approach should be accompanied by a risk analysis of your services
and processes, based on your formal service definitions. Table 13-1 shows an example of how this analysis
should look (see also Figure 8-4).

Table 13-1. Technical Risk Analysis

Is update
operatio

n

Is
idem-
poten

t

Is part of
complex

transaction
Compensating

operation Risk level

Customer

 get_profile() X

 update_profile() X X

create_itinerary() X

 MEDIUM
(non-idem

potent
update)

 get_itineraries() X

Itinerary

add_reservation() X

 MEDIUM
(non-idem

potent
update)

 get_reservation() X

 update_reservation(
) X X

 update_itinerary() X X

confirm itinerary() X X finalize_booking(
)

cancel_itinerary(
)

HIGH (no
guarantee

that
cancellatio
n will work

without
incurring

cancellatio
n fees)

cancel_itinerary() X X

 HIGH
(attempt to

cancel
might still

incur
cancellatio

n fees)

Billing

create_invoice() X

 HIGH
(invoices

can only be
cancelled if

itinerary
was

cancelled
without

incurring
cancellatio

n fees)

 cancel_invoice() X X

 get_invoice() X

 update_invoice() X X

Incident manager

create_incident(
) X

 MEDIUM
(non-idempotent

update)

get_incident() X

 update_incident() X X

Reduce Risk by Applying Best Practices of SOA

SOA project management enables you to significantly reduce project risk by applying a set of
best practices that do not replace a proven methodology introduced at your enterprise but add to
it:

• Divide et impera: decompose your system.

• Create the first service design in the project definition phase.

• Decouple development teams by service contracts.

• Apply a thin threads approach.

• Leverage reuse wherever technically and economically feasible.

• Renovate and simplify your architecture step by step.

• Involve the business department.

• Utilize improved documentation provided by service contracts.

• Create a regression test environment for services.

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.3. Configuration Management
Configuration management in an SOA project requires an approach that is somewhat
different from usual practice. Traditionally, each project creates a single repository in
configuration management systems such as CVS, Rational Clear Case, or Telelogic's
Continuus. Such an approach is not practical in an SOA for the following reasons:

• Services often do not belong to a single project.

• Service infrastructure is used across all participants of the SOA.

• The SOA should enable the independent deployment of individual services.

• The access to the source code of individual services must be controlled
independently.

We discuss these issues in great detail in the next section along with some proposed
solutions.

13.3.1. CHALLENGES FOR AN SOA CONFIGURATION MANAGEMENT

In an SOA, not all artifacts generated by a project will ultimately be owned by this project.
Instead, the services that are intended to be reused in other projects will be owned by the
organization. This is necessary due to the mode of reuse that one strives for with SOA.

Traditionally, reuse has been achieved by either reusing source code or sharing libraries
between different applications. This will lead either to transfer of ownership of the copied
code fragments to the new project or to tying the project to a certain version of a library
that has been used. SOA, on the other hand, focuses on the reuse of software components
at runtime, effectively reusing existing business systems including the life data they own.
This creates a set of dependencies completely different from those of the reuse of code or
libraries. Reuse of existing services will raise the need to amend these services or to fix
errors within these services that are only discovered in subsequent reuse. At the same
time, a project can be expected to come up with some services that will in turn be made
available to the entire enterprise (see Figure 13-11).

Figure 13-11. An SOA leverages a scenario in which multiple projects
typically share common services.

Much the same holds true for certain support code that is written for a number of specific
services, regardless of the eventual ownership of these services. Examples include logging
components (see Chapter 9) and transaction handling (see Chapter 8).

It seems beneficial to be able to maintain, build, release, and deploy all shared servicesand
to some extent the supporting codeindependently from each other. Otherwise, the agility
that the SOA approach enables might be undermined by the requirements of the release
and deployment process.

There is no apparent reason why independent services that are created during any
particular project should only be deployable and maintainable together. In fact it seems
largely beneficial to separate them as much as possible. Consider a service that provides
customer-related information within an airline corporation. This service might have been
created originally to support booking services during a booking project. As a typical
cross-corporate service, it can be reused by other projects. All requested amendments
apply to the customer service but not the booking application and its booking services.
Ownership of the customer service itself might at some point actually move into another
project, for example one that supports a customer retention program. Here, the customer
service will be developed and deployed totally detached from its originthe booking
application.

13.3.2. RECOMMENDATIONS FOR THE SOA INTEGRATION TEAM

Although the creation of an appropriate structure for configuration management (CM) is a
difficult problem, it is actually a benefit of an SOA in that it highlights the parts of a project
that should be grouped together in their own CM containers. Traditional projects tend to
squeeze everything into one container in order to cut corners when defining the build and
deployment process. It is only after several iterations into the project deliveryor the
application lifecyclethat the problems of this approach become painfully obvious.
Interdependencies of project artifacts all too often mean that a fix cannot be delivered in
time or that changes to a library send ripplesor even shockwavesthrough the application
fabrics.

When viewing an application from the viewpoint of an SOA, the division into different CM
projects happens rather naturally from the bottom up. To start with, all basic services
should be put into their own CM container. There might actually be some intermediary
services that are closely related to one basic service, and they should be put into the same
CM container. As long as other intermediary and process-centric services are designed for
reuse, they should be stored separately. Where appropriate, the application frontend and
related project-specific services can be grouped togetheroften by the specific functionality
they offer or by the customer base they target.

After such a separation is made, common libraries will usually emerge that are reused by
more than one service. These libraries themselves are, of course, prime candidates to be
grouped in several independent CM containers.

In the end, any project will consist of one or more "frontend" CM containers and will use
multiple CM containers that provide services of variable complexity and libraries.
Ultimately, the best and most obvious driver for finding the right CM container layout and
granularity is to start with a CM container for each reusable service and work upwards.

Create a Standalone Project in Configuration Management for
Every Reusable Service

Creation of standalone projects (or subprojects) enables individual services to be
developed, maintained, and deployed in an independent fashion. This enables
truly agile development. Services can be maintained and upgraded without
cross-dependencies to an overall multi-project schedule.

At first glance, it might seem that this implies a need for an enterprise-wide CM
management system to properly manage all these different containers. Given that most
organizations run multiple versions of different CM systems at the same time, this would
seem quite scary. In fact, however, quite the opposite is true. A CM container exists to
separate a certain code and configuration set from another one, and there is no compelling
reason why these sets should be maintained within the same product (see Figure 13-12).
Of course, any organization can only support a limited number of CM systems, and the
systems will differ in their capability to integrate with automated build tools of various
vendors. This can actually be a good thing, as certain CM environments might be better
suited for creating Java-based Unix service development, while others are better suited to
support C++-based Windows services or COBOL-based Mainframe development.

Figure 13-12. In practice, different CM systems are involved in one
SOA. The service repository plays a key role by abstracting from the

actual technologies.
[View full size image]

Throwing away an existing CM infrastructure is usually not an option. It is far better to
identify a number of suitable CM systems based on the ones that are already available in
the organization, but at most one to match each target platform that is available. Also, you
should gradually retire CM environments that differ conceptually from the rest in a
significant way. If part of an existing code base is not present in one of the target CM
systems, you then could migrate it to these systems in the course of service enablement or
during subsequent projects. This will eventually enable you to retire all legacy CM systems.

Obviously, runtime reuseas it is leveraged by SOArequires a dedicated version of
management. Although you can go to great lengths to ensure that services are maintained
in a backward-compatible way, this is not always strictly possible. Sometimes, there might
be changes to a system that requires new operation signatures, or a service operation
might need to be removed. Because each actual software project is likely to consist of
various independent services, along with project-specific and enterprise-wide support
libraries, tight tracking of the dependencies of individual software artifacts is required. This
includes information about which application frontends or service versions are compatible
with other service's versions and the dependency on versions of libraries and runtime
environments (see Figure 13-13).

Figure 13-13. Dependencies exist between the various SOA
artifactsapplication frontends and services.

This is different from traditional monolithic software versions, where each version in
configuration management was created as a single entity, with clearly defined dependency.
An example is a traditional software project that depends on, say, a specific version of a
byte manipulation library, whereas the multiple services in their respective current versions
might very well use different versions of the same library.

At first, you might think that the SOA creates a new problem that requires the creation of
such an interoperability matrix. Quite the opposite is true. The creation of a service
environment forces important decisions or makes them at least explicit:

• A documentation of dependencies between runtime components is required

• This documentation belongs to a central and easily accessible place

• The information provided by such a documentation is particularly required for
multiproject-management.

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

13.4. Testing
Testing is probably the major quality control tool in any software development. The term
testing in this context refers to systematic, automated, reproducible testing, rather than
the ad-hoc testing approach that is still dominant in many software development efforts.
This formal approach generates objective and measurable test results that can be used to
obtain a measurement of the quality of the created software artifact.

Testing is best grouped into different categories, depending on the required objective and
level of granularity. First, load testing and functional testing must be distinguished.

Load testing means testing a component under a specific load for a defined time. It is
crucial to judge whether the software can meet any required SLAs. Load testing normally
requires that the test be conducted against an environment where all the backend systems
of the component are available and perform and scale as they will in the live environment.
Otherwise, the response times or stability numbers don't mean much. For example, if a
test is carried out against a simulation of a message queueing system, there is no knowing
if systematic failures of the actual system will keep the performance of the testing
component within the required range.

Functional testing means ensuring that the operational results of a software component are
consistent with expectations. Functional tests that execute a single call with a given set of
parameters and that then compare the result of these calls with the expected result are
referred to as unit tests. Several unit tests can be chained into a testing series, testing
several related and possibly sequential actions. In addition, test robots can automate tests
of an entire application frontend by simulating user actions, again comparing results with
expectation. Automated test tools can execute thousands of tests in short periods of time,
usually far more than can be done manually. This special form of chained unit testing is
commonly known as an end-to-end functional test. When a single componentsuch as an
individual serviceis tested, functional testing might well allow for a certain part of the
application to be simulated. For example, persistence using an object relational mapping
library can be replaced using a simulation of the library. The upside of this approach is that
database setup scripts and resources need not be available and initialized at time of
testing, reducing testing time and speeding the quality assurance process. In contrast,
when a component is functionally tested with all its backend components available, this is
referred to integration testing for this component.

Of course, some overlap exists between the test types because load test tools often provide
some mechanism for result checking and unit test tools provide some mechanism for
generating increased load. Still, the test scenarios described remain different because they
address different problems, often at different stages in the development lifecycle.

Systematic testing, in particular functional development time testing, has become widely
popular with the advent of agile development methodologies such as extreme
programming. However, it often poses a non-trivial problemdeciding which of the created
artifacts justifies creation of a dedicated test. Test design is by no means easy because any
functional test must be reproducible and must achieve as much coverage as possible. The
danger of "testing the obvious" is real, and even large test sets have limited value if they
break the first time the components are called with unexpected parameters. In addition,
building tests is development work in its own right and might require building dedicated
software components, for example a simulation of a backend or initialization scripts for
databases. Still, tests must be as simple as possible to avoid the need to create a "test for
the test."

The nature of SOAs can facilitate finding the most important functional test cases.
Mission-critical enterprise applications might be rendered useless if one of the service
components stops functioning properly after a new release. For this reason, the service
component itself is the prime candidate for functional, integration, and load testing. This
does not mean that end-to-end testing or testing of single libraries will no longer be
required. It merely dedicates a large portion of the testing effort to testing services.

Consider the example in Figure 13-14, which shows a customer retention service that is
composed from multiple services. Two of these services are shown in the figure: a printing
service and a service that provides basic customer data. The customer retention service
has multiple clients, among them a browser-based call center application that supports
telephone marketing to the existing customer base and a number of batch programs that
are used to create mailings to the customers. The system is based on various operating
systems and programming languages.

Figure 13-14. The customer retention program consists of a customer
retention service that is written in J2EE and deployed on a Windows
platform. It relies on an existing mainframe-based customer service
and a printing service based on a Unix platform. Call center clients
connect using a Web application, and a number of Windows-based

batch programs are used to create mass mailings.

As the new customer retention service and its client are created, testing is traditionally
confined to ad-hoc testing. Call center agents would be testing the HTML frontend for the
call center, while printouts from the print service would be manually checked.

To perform testing in a more meaningful manner, the test should be automated using a
test driver. This is illustrated in Figure 13-15. In this case, the backend services are not
real services but are simulations that behave in the way that the real time services would.
This will enable us to test and debug the newly created business logic in the customer
retention service without using valuable mainframe computing time or printing hundreds of
sheets of paper. The driver tests the functioning of the customer retention service by
comparing results to expectations. It also checks the results that are created in the
printing service simulation.

Figure 13-15. Using a test client to test methods of the customer
retention service. In this scenario, the service relies on a simulation

on its dependent services.

In a second scenario shown in Figure 13-16, the HTML user interface is tested using a test
robot. To start the test, the test robot initializes a mainframe customer service. The robot
then performs various actions at the user interface, checking if the result is in accordance
with expectations. Finally, it checks the database of the printing service to determine if the
correct number and type of printouts have been created during the simulated call center
interaction. Apart from the actual printing, this example provides almost a full end-to-end
test scenario, where all the components are properly integrated.

Figure 13-16. In this scenario, the behavior of the graphical user
interface is tested against the actual mainframe-based customer

service. The printing service is still simulated in this test.

To create a satisfactory test suite, you will need many more tests than those illustrated
here. In particular, test scenarios will include some load testing. Of course, the customer
retention service and the print service will usually have their own tests in place. In
addition, each test will include numerous calls with different parameter sets that simulate
boundary conditions as well as invalid input.

The previous examples make clear that any test must be repeatable. For a functional test
of a service, this means in particular that it must be repeatable with a new version of the
service using the old parameter set for input and expected output. This ensures that a new
software component is essentially "backward-compatible" with the older component. Such
a test is referred to as regression test. Regression tests are mostly functional tests, but
there might also be the need to create regression tests that are load testsensuring that the
performance of a new software version still delivers appropriate response times and
throughput.

When testing services, regression tests should cover all reusable services. Here, it will
usually be necessary to test a number of calls in sequence to ensure proper operation.
Regression tests should particularly be created on basic services so that basic services can
be updated and tested on their own. Regression tests on services will often require actual
backend operationnot only for load testing but also for functional testing. This is because,
due to their very nature, a lot of services will be technology gateways or adapters whose
main purposeand therefore the main objective in testing themlies in accessing various
backend systems.

Tests will usually be conducted using a general test driveran environment that is capable of
running tests and reporting the test results (see Figure 13-17). Tests are usually defined
using scripts or mainstream programming languages. Test drivers often also provide
mechanisms to trigger initialization of resources upon which the tests relyfor example,
initializing a database in a certain state or providing a specific file for input. Generic test
drivers are available for both load and unit testing. Popular load testing tools include
Mercury Interactive LoadRunner, the Grinder, and Jmeter. To some extent, they can also be
used as end-to-end tools, particularly when testing Web applications. End-to-end testing is
traditionally the domain of test robots such as Rational Robot. Functional test tools include,
for example, Junit and Nunit. However, in the unlikely event that none of the available
tools meets the particular needs of the tester, most tools on the market can be easily
extended and customized.

Figure 13-17. A generic test driver used in an end-to-end functional
test for a service. The database is initialized into a defined state, and a

sequence of tests is run against the service using the generic test
driver. Results of the tests are logged and can later be analyzed.

Create a Regression Test Environment for Most Services

Every basic service and most other services should be complemented by a full
regression test environment. Regression testing will create confidence for users
and maintainers of the service.

Note that test definition should be maintained with the actual application and service
source code in configuration management as it is a vital element of the final delivery. In
fact, one might argue that the tests actually enable confident reuse of the service.
Functional tests should be an integral part of any build process. In fact, some configuration
management (e.g., Continuus) and various build tools (e.g., Jakarta Ant) provide
out-of-the-box support for test generation and test result reporting.

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

13.5. Conclusion
In this chapter, we presented best practices for SOA projects. Most importantly, these
practices do not represent or require a new project management methodology. SOA-driven
project management means adopting a set of useful, SOA-specific practices that are
complementary to an established methodology.

SOA project management starts in the first minute of a new project. A first draft of the
high-level service design is a major deliverable from the project definition phase. At the
core of SOA-driven project management, we find SOA artifactsin particular, service
contracts and services, which we leverage as project control elements. Most important,
SOA-driven project management enables the efficient decomposition of complex,
potentially heterogeneous distributed systems into manageable sub-systems and the
disentanglement of the dependencies between them. If used properly on the project
management level, service iterations are the right tool for managing the heartbeat of the
project.

Furthermore, SOAs enable enterprises to put an efficient configuration management in
place. Nevertheless, configuration management is regarded as a highly complex task,
reflecting today's heterogeneous enterprise reality.

Finally, we described service-driven regression testing as another key factor in SOA
success. The particular service design enables efficient testing of enterprise applications,
that is, the encapsulation of services, their distinguished business meanings, and the
clearly defined, coarse-grained interfaces.

References

[Gro83] Groves, Leslie R . Now It Can Be Told: The Story of the Manhattan Project. Da Capo
Press, 1983.

URLs

http://www.agilemanifesto.org

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.agilemanifesto.org
http://www.processtext.com/abcchm.html
http://www.agilemanifesto.org
http://www.processtext.com/abcchm.html

Part III: Real-World Experience
The third part of this book describes four cases of successful SOA introductions on the
enterprise level, looking at them from the business and the technical perspective. The case
studies include Deutsche Post, Credit Suisse, Winterthur Insurance, and Halifax Bank of
Scotland.

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 14. Deutsche Post AG Case Study
This chapter describes the introduction of a Service-Oriented Architecture at Deutsche Post.
Deutsche Post belongs to Deutsche Post World Net, a multinational group with more than
275,000 employees, comprising also the brands DHL and Postbank. The SOA described in
this chapter was set up for the MAIL Corporate division at Deutsche Post, a partner to three
million business customers, providing services to 39 million households through 81,000
delivery staff, 13,000 retail outlets, 3,500 delivery bases and 140,000 letterboxes.
Deutsche Post is Europe's leading letter mail service provider and the number one direct
marketing company in the German market. Currently, the SOA is also rolled out at DHL,
which counts 50 percent of the "Forbes 500" companies that have logistics requirements
among its customer base. DHL has a global presence in 150 countries, a total of 430
terminals/warehouses and a total of 45,000 employees.

Deutsche Post's decision to introduce a Service-Oriented Architecture was based on several
considerations. Deutsche Post's IT landscape grew significantly for the last years. Such a
huge, distributed and complex infrastructure is not easy to maintain especially concerning
the core business processes. In addition, the development of new applications became
difficult. Numerous applications were so-called island solutions instead of holistic,
business-driven solutions. Moreover, applications did not have clear functional boundaries,
which led to considerable functional redundancy between applications and made
modifications complex and resource intensive.

Finally, the maintenance of the IT architecture used up a considerable amount of the
overall IT budget and offered hardly any access to core information about revenues, cost,
and competitor information, which is crucial in today's dynamic business environment. This
information was scattered over many components of the IT landscape and had to be
consolidated via complex processes. The need for a consistent and centralized data storage
became apparent.

Given this situation, Deutsche Post decided to introduce a business-driven SOA. [1] The initial
concept of this SOA was produced in 1999, and the actual implementation started in 2000.
In addition to business services, a service infrastructure, the Service Backbone (SBB), was
also realized. This backbone was launched in December 2001 and has since then been
successfully used as the technical basis for Deutsche Post's SOA.

[1] The SOA is called Business Domain Model (BDM) at Deutsche Post.

As we have indicated in Chapter 12, a great deal of an SOA's success depends on properly
defined processes and comprehensive documentation. Deutsche Post therefore provided a
set of three articles defining the foundation of their SOA (see [HBa04], [HBr03], [HS03]).
This case study makes extensive use of this worthwhile documentation.

This chapter describes in some detail how the SOA has been implemented at Deutsche
Post. In Section 14.1, the general scope of Deutsche Post's architecture is presented, both
from a business and technical perspective. Section 14.2 then discusses the organizational
structures and processes used to implement the SOA. The technological perspective is
presented in detail in Section 14.3. Finally, Section 14.4 describes the lessons learned, the
benefits achieved by Deutsche Post, and future perspectives.

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.1. Project Scope
Deutsche Post sees its SOA as a business-oriented IT strategy. The main objective is to
standardize access to functionality and to ensure reusability. The SBB (Service
Backbone)the major outcome of the infrastructure developmentis described in detail here.

When starting to restructure its IT landscape, Deutsche Post followed the approach
summarized in Figure 14-1.

Figure 14-1. Deutsche Post's use of a Business Domain Model to get
from business processes to IT applications.

[View full size image]

The first step was the creation of a business requirement evaluation, which led to the
redesign of many business processes according to the analyzed input-output relations. The
Business Domain Model (BDM) that was designed in further process steps is comprised of
modular components. Closely related functionalities and data are bundled in domains. [2]

[2] A brief remark regarding terminology: The domains at Deutsche Post correspond to what is called "services" in this book, they provide a
cluster of functionality. The service implementations at Deutsche Post correspond to what is called "interface" in this book.

14.1.1. BUSINESS IMPACT

One of the most important benefits of Deutsche Post's BDM is the fact that it enables a
view of IT applications from the business perspective by providing appropriate
representation of business-oriented components, their interfaces, and interconnections.

Deutsche Post utilizes an insightful metaphor to promote its SOA internally (see [HBa04]).
Deutsche Post compares the concept of its SOA to a map of a city. BDM's high-level
components are called domains. They describe reasonably separated components, which
contain the main business logic. Deutsche Post compares these domains to different
districts of a city. Every district (such as airport, residential area, industry parks, etc.) has
a clearly defined purpose. The urban infrastructure (such as streets, and electricity and
water supply) connects the different districts to each other and is compared to Deutsche
Post's Service Backbone, which provides access to the business logic encapsulated by the
domains.

Figure 14-2 shows the Business Domain Model used at Deutsche Post and its use of the
domain concept. As the main components of this construct, domains contain modularly
defined functionality and thus enable the support of business processes and the underlying
data.

Figure 14-2. Deutsche Post's Business Domain Model with domains.
[View full size image]

According to Deutsche Post's motivation paper [HBa04], the main characteristics of
domains are as follows:

• Domains encapsulate their functionality and data.

• Functionality is implemented without redundancy, and information is consistent.

• Functionality and data can be used everywhere within the domain, and they can be
combined to support new business processes.

• New projects can build upon existing assets, and investments are secured.

One of the first services to be realized was Customer Management,[3] that is, management
of core customer data. This service was chosen because it is widely used within Deutsche
Post. It offers about a dozen operations, including operations for inserting, searching for, or
deleting customer data. Currently, there are around ten service consumers of the
customer-management service with a resulting workload of approximately 0.5 million calls
per month.

[3] A service belonging to the domain Customer.

Another widely used and visible service is Complaint Management.[4] Although only one
service consumer uses the implemented service, this service consumer is connected to
more than 1,000 clients.

[4] A service belonging to the domain Relationship.

Altogether, the business services implemented so far are used by a double-digit number of
applications, issuing approximately 2 million service calls per month. In addition to
services providing business functionality, the SOA at present also contains about a dozen
technical services with altogether 80 service operations.

In general, the focus of the implemented business services is on intra-corporate use.
Deutsche Post's SOA was developed for Division Mail, which is very business- and
IT-oriented and open for innovation. A dedicated IT business unit was set up at Division
Mail that is, among other things, responsible for the implementation of both the business
services and the underlying infrastructure (the Service Backbone).

In addition to the intra-corporate usage of the SOA, there are also some pilot projects
exploring the external use of the implemented services. These pilot projects reuse the
services' interfaces and enhance them by adding an extra layer based on WSDL (Web
Services Description Language), thereby turning them into full-fledged Web services. [5]

[5] It should be noted that crossing the enterprise boundary requires more than just enabling an Internet-friendly protocol (see Chapters 6
and 7).

Moreover, based on the success of Deutsche Post's SOA at Division Mail, a rollout for DHL
(another major brand of Deutsche Post) is currently in preparation. The idea is to reuse the
methodology developed at Division Mail and the technical infrastructure (i.e., the Service
Backbone). However, services will be developed by DHL themselves.

14.1.2. TECHNOLOGY IMPACT

Deutsche Post's SOA has a strong technical focus on Java applications. Although there is an
adapter to C++ and JDBC, the support of heterogeneous environments is not in Deutsche
Post's main focus.

At Deutsche Post, the integration infrastructure needed for an SOA is realized with the
Service Backbone (SBB). Its main functionality is to receive service calls from service
consumers and to forward them to dedicated service providers (see Figure 14-4). The key
features of the SBB are (see [HBa04]):

• Easy-to-use interface to connect technically to SBB

• Comprehensive directory for all available services

• Syntax and type validation of all documents transported by Service Backbone

• Transportation mechanisms for different interaction styles, including data
compression

• Exhaustive user directory used for authentication and authorization

• Transformation engines for structural document mappings between XML schemes as
well as content matching

Figure 14-4. A service call using SBB functionality.

The purpose of the SBB is purely technical. The entire business logic of the SOA is placed
in domains. Existing custom-built applications and off-the-shelf packages like SAP are
encapsulated according to the standards of the SBB in a way that their functionality can
easily be used by SBB participants. The whole philosophy of SBB is federal because the
business is federal, too. Data transformation is also handled with care: To ensure that no
business logic is incorporated directly into the Service Backbone, the necessary
transformation is performed by using mapping tables. The SBB only provides the basic
functionality for the execution of these transformations. The contents of the tables, that is,
the actual mappings, are maintained on the business level, however, in the service
implementation of the domain. The respective business units enter the required
information into the mapping tables and check table updates into the SBB runtime
environment. [6]

[6] Classic EAI tools usually prefer a hub-and-spoke approach for integration, which requires a part of the business logic within the
integration tool. This can lead again to complex dependencies between business applications and the integration infrastructure that have
been avoided by Deutsche Post.

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.2. Implementation
As mentioned previously, the main reason for implementing the SOA at Deutsche Post was
the realization that the IT landscape existing at that point in time was too expensive and
complex to maintain and extend. Interestingly, this was not due to the existence of
mainframes and host applications, as is often the case in large corporations. [7] No such
systems were in use at Division Mail. Complexity simply stemmed from the interfaces and
the high degree of intertwining between the existing point-to-point interfaces and
applications.

[7] This is further evidence for the fact that the quality of a software architecture is largely independent of technology. Both brand new
developments comprising Java, C++, and decentralized servers and traditional environments based on COBOL, C, and centralized
mainframes can equally serve as a base for an efficient architecture.

As this complexity led to the failure of projects at Deutsche Post, it prompted a change in
the infrastructure. No real alternative to an SOA was investigated in detail, as no other
option seemed sufficient. At the beginning of the SOA introduction, costs for the initial
business projects and for the Service Backbone development were estimated. However, no
detailed business case was compiled, as it seemed obvious that changing the infrastructure
into an SOA was inevitable.

Although there was no resistance on the conceptual level against the SOA approach, some
problems arose as soon as implementation started. The next section describes the
processes and structures used by Deutsche Post to overcome these challenges.

14.2.1. PROCESSES AND STRUCTURES

Deutsche Post differentiates two major types of components in its SOA. There are service
providers, which offer services, and service consumers, which use those services.
Obviously, a piece of code can act as a service consumer with respect to some services and
as a service provider with respect to other services (see Chapter 5 for the discussion of
basic and intermediary services).

Deutsche Post defined a clear process for achieving a service design that was accepted
across the borders of a single department (see [HBa04]). When implementing a new
service provider, the following steps must be executed:

• Identify all potential service consumers.

• Specify business functionality of the new service according to the requirements of
all potential service consumers.

• Match business requirements to Business Domain Model and implemented services.

• According to the findings, define and start an implementation project for this new
service provider.

• Create a service description, service-level agreement, and an XML Schema for
publishing the service to potential service consumer.

• Connect service provider to Service Backbone by deploying the SBB interface locally.

• Register service provider in SBB user directory.

In order to connect a new service consumer to the SBB, the following two steps must be
processed:

• Insert service consumer information in SBB user directory for authentication and
service authorization.

• Connect service consumer to SBB by deploying the SBB interface locally.

As we mentioned earlier, when this process of service development was introduced at
Deutsche Post, some problems emerged that were mostly related to division of labor and
sharing of responsibilities. For example, when a project initiated the development of a
service, all potential consumers of the service had to be consulted. On one hand, it was not
easy to get future consumers interested, and on the other, it meant that actors "not
paying" for the service development gained influence. In general, business units were
concerned that they would lose control over their services.

The SOA development at Deutsche Post started with a "closed user group," which helped to
keep resistance limited. The business units involved in the initial projects were in principle
in favor of the SOA. But even here they had to be constantly convinced that the SOA would
help them to make their own development projects more efficient and less expensive. They
were also offered support by the SOA team on the technical level.

However, it became clear quickly that introducing the SOA at Deutsche Post amounted to a
paradigm shift within the corporation. To successfully perform this shift, a dedicated
business unit was set up. This unit comprises teams that are responsible for supporting the
individual business units, making sure that each business unit has a specific team
available to help them with the implementation of the SOA.

Work in the unit centered around two focal points: governance and business support.
Governance was concerned with the development of strategies and guidelines and was
mostly internal. Business support consisted of helping the business units involved in
development projects with any SOA-related challenges they encountered. In doing so,
adherence to the internally developed strategies and guidelines was also ensured.

Half of the business unit was hired externally through head hunters, contacts within the
SOA community, and word of mouth. Only a few employees from Deutsche Post were
included in the business unit. This was because the number of IT experts available for
internal relocation at Deutsche Post was simply not sufficient. In addition, employees of
this new business unit needed special skills.

The skill profile demanded, on one hand, extensive knowledge of Service-Oriented
Architectures, object-oriented programming, XML technology, and open W3C standards
such as Web services. This included in particular knowledge about available
state-of-the-art tools, discussion topics in forums, and current trends in these areas. On
the other hand, employees had to have experience regarding project management, quality
assurance, requirements analysis, and the corresponding soft skills needed in
team-oriented development projects.

The business unit is directly responsible to the management board of Division Mail at
Deutsche Post AG and is thus on the same level as Marketing, Sales, or Production.

Another concern with the introduction of the SOA consisted of the overhead it caused
during the initial development of services. Deutsche Post used two means to make sure
that reusability was taken into account during the design process. First, potential service
consumers were involved in the design process. Second, the IT strategy unit reviewed the
service designs and insisted on a level of abstraction that would make sure that the
services would be reusable.

Interestingly, the experience gained regarding the SOA overhead was that the additional
costs were rather limited. In particular, they were mostly caused by increased
communication requirements and not related to technological issues. Nevertheless, it is
important to take into account the communication overhead when planning project
budgets. One way that Deutsche Post dealt with it was allowing the central business unit
responsible for the SOA introduction to subsidize the overhead resulting at the business
units. Of course, to make this possible, a suitable budget has to be foreseen for these
subsidies.

14.2.2. SERVICE REGISTRY

Deutsche Post uses a registry to store information about available services. It basically
contains:

• Syntax of the service interface

• Meta information concerning security, binding, and authorization

• Versioning information

Versioning turned out to be a particularly important aspect of service development at
Deutsche Post. Because services were developed incrementally, it often happened that new
versions had to be released to address new requirements. Because it was not feasible to
migrate all service consumers immediately to new service versions, different service
versions were provided in parallel. However, obsolete versions were only supported for a
transitional period to avoid uncontrolled growth of service variants.

14.2.3. PROJECT MANAGEMENT

For Deutsche Post, the SOA's main benefit from the project management point of view
consists of the reduction of interface complexity and the decentralization of software
development. Because individual service implementation projects can be carried out
flexibly and in a decentralized fashion, the risks inherent in large projects are substantially
reduced. Moreover, the application landscape can be developed step by step, while the
strategic flexibility is maintained in the long term.

Although its general approach to project management did not change drastically, Deutsche
Post did have to make some adjustments and extensions. The most obvious innovations
concerned the establishment of a dedicated IT strategy unit (see Figure 14-3) and the
process for service design as depicted in Section 12.1.1. As a consequence, development
became slightly more complex, and new roles and activities had to be included because of
the reusability aspect. However, it should be noted that the effort for developing the
functionality itself was not affected. An overall service coordination had to be established,
which had two main purposes. First, guidelines had to be developed including standards
for service interface design. Second, adherence to these guidelines had to be checked
constantly during the development process.

Figure 14-3. The business unit "IT Strategy Mail" provides distinct
teams supporting the individual business units.

[View full size image]

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.3. Technology
The service concept of Deutsche Post's SBB is similar to the Web service concept. Web
technologies such as SOAP and HTTP are combined with reliable messaging through an
underlying MOM-based on JMS (Java Messaging Service). Furthermore, the SBB supports
important features such as version management, safety, and dynamic binding and thus
offers enriched functionality compared to standard Web services. For the future, Deutsche
Post plans to publish SBB services as Web services based on WS-I Basic Profile 1.0. [8]

[8] WS-I Basic Profile 1.0 is a profile developed by WS-I (Web Services Interoperability) to ensure interoperability between Web services
platforms from different vendors (see http://www.wsi.org).

14.3.1. ARCHITECTURE

The SBB is built of three key components, which we will describe in detail (see [HS03]):

• Local SBB interface

• Central infrastructure components

• Technical service participants

Local SBB interfaces enabling the connection are implemented in each service participant.
There are two kinds of local SBB interfaces: Service providers use a Service Programming
Interface (SPI), whereas service consumers are connected by an Application Programming
Interface (API). When a consumer calls a service, it uses the API, sending a message that
contains the input parameters. This message (XML) is sent to the provider's SPI by SBB,
and the requested operation is started.

For the processing of a service call, two central infrastructure components are involvedthe
Service Registry (currently based on LDAP, UDDI in development) and the message queue
(based on JMS). To ensure high availability, Deutsche Post replicates and clusters these
infrastructure components. Figure 14-4 shows a service call using SBB functionality.

This call information mainly consists of an XML document containing attributes of the
business objects that are to be created, manipulated, or modified. Additional parameters
can be used to control synchronous or asynchronous behavior or other aspects, such as the
number of results to be returned when calling a search service.

The Service Registry is the central source for all information needed for the communication
between service participants. It should be noted that all interfaces always access the
Service Backbone, regardless of their interaction style, which can be synchronous,
asynchronous, publish/subscribe, or request/reply. Which interaction type is used depends
on the business requirements. When calling the interface, the interaction type is passed
through a parameter.

The call to the Service Backbone is realized as a Java call, where the main argument
containing the business object information is represented as an XML document. The
structure of the XML documents is described through service-specific XML Schemas.
Internally, SOAP is used on top of Java, and there are also wrappers and adapters for C++
and non-XML arguments. [9] Actually, before the Service Backbone initiative started, the IT
Strategy of Deutsche Post was based on C++. The need to easily integrate the associated
software assets using the aforementioned wrappers and adapters is a major requirement of
the new SOA.

[9] For the Java wrappers of C++-Code the product Junc++ion from codemesh is used, which supports various C++ dialects, including
GNU and .NET.

The Service Backbone itself is built in a loosely coupled fashion, relies on standards, and
avoids proprietary features. Although for example MQ Series is used for message handling,
no proprietary features are used. Instead, connection to MQ Series is realized by using the
JMS interface. A similar approach is used with other components in order to ensure that
products can be easily interchanged and no vendor-dependency is created by using
non-standard features.

Deutsche Post currently uses various technical service participantsincluding
Transformation, Service Registry Administration, Data Integration, and Single Sign On.
Privilege Management and Service Registry are candidates planned for further releases.

14.3.2. REPOSITORY, SERVICE INTERFACES, AND CONTRACTS

In order to maximize reusability, Deutsche Post designed their service operations in a
rather coarse-grained fashion. When retrieving customer data, for example, almost 100
attributes are returned by the service, which then can be filtered on the client side. The
alternative would have been to perform filtering within the service, which would have
restricted reusability.

Exceptions to this general approach are only made in the context of critical performance
requirements. Although it is important to insist on generic and reusable interfaces, it is
also necessary to remain flexible and sometimes acknowledge the need for a custom-built
interface. However, these exceptions have been minimized as far as possible and were only
authorized if there were very convincing arguments for them.

The registry contains information about all services currently available at Deutsche Post's
Division Mail. For each service, an XML Schema describing the XML document it expects as
an argument is specified in the registry. In addition, information regarding binding and IP
addresses is specified, as well as some meta information, concerning service-level
agreements for example.

Currently, the registry implementation is based on LDAP. Deutsche Post is planning to use
UDDI as the basis for its registry in the future. This is mainly motivated by the desire to
keep up with development in Web services.

14.3.3. CHOREOGRAPHY, SECURITY, AND MANAGEMENT

There is currently no support for distributed transactions or workflow management within
Deutsche Post's Service Backbone. These topics are seen as important challenges both
from the business and technical perspectives. However, currently the process logic is
implicitly contained in the service implementation and is not explicitly modeled in a
declarative process format. The Service Backbone is thus only responsible for the transport
of data between the service consumer and the service provider.

Although the Service Backbone is logically a centralized component, its physical realization
is highly distributed. This is to ensure loose coupling and to avoid bottlenecks and single
points of failure created by centralized solutions. Approximately 90% of its functionality
runs locally based on libraries, which are installed throughout the network. As we have
already mentioned previously, there are only two centralized components, the directory
and the queue.

As a consequence, there is no central control of all the interaction between service
consumers and providers on all machines in the network. Monitoring is thus currently
restricted to local monitoring. In the future, this will have to be enhanced in order to
provide unified information about the overall system behavior. However, it is not yet clear
how to achieve this without violating the principle of loose coupling.

Finally, security is realized through modeling access rights based on users, groups, and
roles. Access rights are checked on the general service and operation level. Because use is
so far restricted to intra-corporate applications within the demilitarized zone, no encryption
is performed. This would be necessary for supporting external usage.

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.wsi.org
http://www.wsi.org
http://www.processtext.com/abcchm.html

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

14.4. Lessons Learned, Benefits, and Perspectives
After more than two years of successfully running its SOA and the associated service
infrastructure SBB, Deutsche Post has gained much useful experience, which is
summarized in the following practical advices [HBa04]:

• If you want to reduce IT complexity through integration, start with the business
(logical) view and use an architectural approach.

• Focus on services (multiple use of data and functionality), not on data interchange
(point-to-point communication).

• Don't neglect the integration infrastructure layerthis is much more than just "data
transport."

• The technical integration infrastructure is characterized by long-term stability, so
stay vendor-independent and stick to open standards.

• The success of a whole integration project mainly depends on the acceptance of all
business-driven service participants. So, don't let the IT professionals drive the
effort alone!

Deutsche Post managed to reduce time to market significantly. The realization of new
services only takes a few days due to the integrated infrastructure. Using the SBB helps
keep implementation projects manageable and lean. These projects can focus on service
implementations and do not have to worry about data connectivity. Moreover, the SBB can
be maintained and updated without having to modify the services themselves.

As we mentioned, there were also some challenges to overcome when introducing the SOA.
In particular, the effort initially needed to convince service providers to take reusability into
account in their development process was higher than expected. A mixture of persuasion,
subsidies, and coercion was necessary to achieve the desired compliance with the SOA
standards.

A particularly visible success story was the adoption of the service "Customer Management
" in the call center application, which today provides additional functionality such as
registered mail. Before this adoption, all call center contacts were manually recorded by
the agents, which led to typos and data duplication. Now call center agents have direct
access to customer data by simply typing in the customer identification number.

The SOA and the Service Backbone have proved to be successful at Deutsche Post and are
constantly extended by involving current and potential users in the overall process.

According to [HBr03], the following extensions are planned for the next major release (SBB
Release 3.0) of the Service Backbone:

• Instrumentation and service management

• Service call routing with intermediaries

• "Users and Rights" as a service participant

• Pluggable core architecture

• Support of "Process Integration" (phase 1) as a service participant

After the successful introduction of the SOA at Division Mail, a rollout at DHL is now under
way. In doing so, Deutsche Post will reuse the basic methodology and the Service
Backbone developed already. A special team will be set up at DHL that will be responsible
for integration and consolidation. This team will be supported by the IT strategy team at
Division Mail. The decision to extend the SOA to DHL is also a sign of the positive
perception of the SOA at the level of Deutsche Post's top management.

References

[HBa04] Herr, Michael and Uwe Bath . SBB Motivation Paper: The business-oriented
background of Service Backbone. http://www.servicebackbone.org/, January 2004.

[HBr03] Herr, Michael and Stefan Brombach . SBB Management Paper: Benefits and
application range. http://www.servicebackbone.org/. September 2003.

[HS03] Herr, Michael and Ursula Sannemann . SBB Technical Paper: The Architecture of
Service Backbone. http://www.servicebackbone.org/. October 2003.

[Sc02] Schulze, Jan . Geschäftsprozesse bestimmen die Architektur: EAI senkt IT-Risiko
der Post, Computerwoche No. 28 of July 12, 2002, http://www.computerwoche.de.

Links

http://www.computerwoche.de

http://www.servicebackbone.org

http://www.wsi.org

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.servicebackbone.org/
http://www.servicebackbone.org/
http://www.servicebackbone.org/
http://www.computerwoche.de
http://www.computerwoche.de
http://www.servicebackbone.org
http://www.wsi.org
http://www.servicebackbone.org/
http://www.servicebackbone.org/
http://www.servicebackbone.org/
http://www.computerwoche.de
http://www.computerwoche.de
http://www.servicebackbone.org
http://www.wsi.org
http://www.processtext.com/abcchm.html

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 15. Winterthur Case Study
In this chapter, we will describe the Service-Oriented Architecture implemented by the
Winterthur Group, a leading Swiss insurance company with its head office in Winterthur. As
an international company, the Group provides a broad range of property and liability
insurance products in addition to insurance solutions in life and pensions that are tailored
to the individual needs of private and corporate clients. The Winterthur Group has
approximately 20,000 employees worldwide, achieved a premium volume of 33.5 billion
Swiss francs in 2003, and reported assets under management of 138.7 billion Swiss francs
as of December 31, 2003.

In 1998, Winterthur's Market Unit Switzerland developed a concept for an Application
Service Platform. Since then, this application and integration platform called "e-Platform"
has been implemented and used as the technological basis for the realization of a
Service-Oriented Architecture. Its main purpose is to provide a common set of standards,
guidelines, processes, frameworks, and integrated products in the form of a single package
suite to access functionality available on the mainframe through standardized service
interfaces. This functionality is then used to provide customer data access, claims
notifications, financial reports, life insurance quotations, analysis and management of
company risks, and information systems for insurance brokers.

The main focus of Winterthur's SOA is to provide reusable coarse-grained and
technology-independent services for the application frontends in order to enable the access
of backend functionality on the mainframe. This matches the purpose of an SOA, which is
to decouple the existing system components by applying the principles of modularity and
encapsulation.

The main business driver for the SOA introduction was Winterthur's plan to offer their
customers, partners, and employees new channels, in particular access using the
Internet/Intranet, which required a tighter integration of existing functionality. The
monolithic mainframe system provided a major obstacle to those plans, and therefore they
decided to use an SOA to start it. They hoped that the SOA, which was technologically
based on CORBA, would significantly reduce the overall complexity of the system and help
to lower soaring maintenance costs. It was the desire to reuse as much of the implemented
services as possible.

In the meantime, the platform has become a suite of integrated software infrastructure
technologies, consisting of an integration framework, a portal framework, a security
framework, and enterprise application servers. Today, it is not only used in Switzerland but
also abroad in other Market Units of Winterthur.

The case study presented in this chapter will show in some detail how the SOA has been
implemented at Winterthur, both at the organizational and technical levels. Section 15.1
describes the general scope of Winterthur's architecture. Section 15.2 discusses the
organizational structures and processes used to implement the SOA. A more technological
perspective is presented in Section 15.3, and finally, Section 15.4 describes the lessons
learned, benefits achieved, and future enhancements for the company.

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.1. Project Scope
The scope of Winterthur's SOA introduction is mainly defined by the requirements of
innovative business-driven projects and the need to reuse existing mainframe applications.

15.1.1. BUSINESS IMPACT

The first pilot project to be implemented within the SOA was wincoLink, an interactive
customer service of Winterthur Leben, the life insurance branch of Winterthur. It provided
corporate customers with online access to all contracts and contained direct information
about, for example, vested benefits. It also supported changes of contract information,
such as the inclusion of new employees in a corporate contract or a change to address
data.

wincoLink was chosen as the pilot project because it not only was restricted to the passive
browsing of static content but also involved user interaction. This provided Winterthur with
the prestigious benefit of offering the first interactive life insurance Internet application. In
addition, wincoLink promised significant cost-saving potential because it reduced
Winterthur's customer support by enabling customers to access and change contract
information directly, avoiding the need to go through Winterthur staff. In addition,
wincoLink increased customer satisfaction because the online content available for
inspection was always up-to-date.

Finally, wincoLink offered the advantage of a restricted user group, namely corporate
customers, which could be enlarged step by step. It was thus possible to increase the
support organization and the necessary processes incrementally, while extending the user
group in a parallel manner. In fact, the wincoLink project turned out to be ideal for
collecting experiences associated with the SOA without any major risks.

15.1.2. TECHNOLOGY IMPACT

The focus of Winterthur's SOA is on the integration of existing host applications. One of the
major incentives for the new architectural approach was the soaring cost for maintaining
monolithic applications on the mainframe computer. In addition, Winterthur wanted to add
new "sales" management channels to their IT infrastructure, in particular through the
Internet and Intranet in order to make their applications and solutions widely available.

In Winterthur's SOA, a service is defined as a set of operations granting access to a
simplified business context or to enterprise information in the form of core business
entities. Winterthur distinguishes three types of services (the terminology used for this
distinction is Winterthur's):

Domain-specific business services. [1] These services belong to a defined domain, using
the domain-specific model to manage enterprise information. The focus is on reusing
functionality related to core business entities. These services are implemented within the
domain service layer that in return provides core business functions grouped by domains
such as partner, product, contract, or claims. This function is subsequently reused across
several applications, protecting the enterprise data by ensuring that business rules are
correctly applied.

[1] According to the terminology used in this book, these would be basic services.

Services implementing business processes. [2] These services orchestrate domain
specific processes from different domains in order to provide functionalities and composite
information for a single business activity. Business activities are the defined atomic steps
within a business process. The focus is on providing a functional, simplified business
process. Reuse, however, is not the main issue at this layer. Instead, these services are
implemented within the application layer and are responsible for providing the
business-process context to the domain service layer. In other words, this layer acts as a
facade to combine and extend services to implement the business functionality described
by use cases. This layer is accessed by the presentation layer that enables the user to
interact with the system.

[2] According to the terminology used in this book, these would be intermediary services, mostly facades.

Technical services. Technical services provide functionalities related to security or system
management, including configuration, user administration, printing, and code services.
These are based at different technical layers and are not described further in this case
study.

In addition to these services, there are also application frontends, which, according to
Winterthur's terminology, belong to the presentation layer:

Presentation layer. This layer contains GUI application, which are mostly HTML based
(i.e., accessible using standard web browsers).

Figure 15-1 shows the 3-tier architecture used by Winterthur (a more detailed architecture
will be presented later in Section 15.3). This logical layering of the architecture, which is
more or less standard for current Enterprise Systems, distinguishes between a presentation
layer, an application layer, and the domain and data layers and is not to be confused with
physical deployment. These layers are distributed according to non-functional requirements
using one of the patterns illustrated in Figure 15-2.

Figure 15-1. Winterthur's N-tier architecture.
[View full size image]

Figure 15-2. Example patterns for layer distribution.
[View full size image]

The initial implementation of the SOA and e-Platform focused mainly on offering reusable
domain services on the mainframe computer. Its main purpose was to allow the
applications to be implemented in the application layer and to use standardized interfaces
to access data and functionality on the host.

As we explain in more detail later on, CORBA was used to implement the domain services.
Extensions of the e-Platform that include the necessary standards, processes, tools, and
guidelines toward EJB, asynchronous messages and Web services are currently being
defined.

Figure 15-3 shows the services landscape of Winterthur with six top-level domains and
their respective sub-domains. Winterthur uses these domains to structure their services
and define degrees of decoupling. Whereas services within a sub-domain are not
necessarily completely decoupled, there are no dependencies between services from
different domainsthat is, decoupling is complete across domain boundaries.

Figure 15-3. Winterthur's Non Life Applications (NLA) services
landscape 2003.

[View full size image]

One reason for this "mixed" approach is that decoupling is both costly and risky at times.
It is therefore reasonable to place an initial limit on the degree of decoupling and choose a
rather coarse-grained structure, as illustrated by the top-level domains in Figure 15-3.
These top-level domains constitute the main application groups offered by Winterthur and
provide a clear intermediate structure for which service contracts and application frontends
can be designed.

According to the SOA philosophy underlying Winterthur's e-Platform, services provide
given functionality as coarse-grained operations. To capture this functionality,
technology-independent service contracts are established. These contracts are published in
a repository and contain interface definitions and descriptions of data elements used. From
the SOA's point of view, services are completely defined by these contractsthat is, a service
constitutes a black box with respect to all internal aspects of the service implementation
and is not visible in the contract.

This black box approach allows a rather effective decoupling of clients and servers in
addition to the transparent location of service implementations.

Currently, 66 services are in production, another 21 are under development, 26 are in the
test phase, and 3 additional services are planned for the near future. Every service contains
one to three operations.

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.2. Implementation
This section deals with the processes and structures that Winterthur established to
guarantee the success of the SOA, the repositories constructed to make information on
services available, and the project management techniques employed.

Selling SOA within the Winterthur was difficult, especially explaining its benefits and its
cost. It took also a relatively long time to make its specific concepts understood and to
develop an understanding of the systems' implications and the necessary process
adjustments.

Two reasons led to the initial support for the SOA. First, the problems resulting from the
monolithic structure of the mainframe applications were blatantly obvious, in particular
regarding maintenance costs and lack of flexibility. Second, architects, and analysts
advertised for the SOA at all major IT events.

In particular, the local CIO strongly supported the SOA. Building on the previously
available e-Platform infrastructure, a project team accomplished the necessary standards,
guidelines, training modules, processes, and organization to define and implement the
SOA. The project team was staffed with a resort architect, an e-Platform architect,
e-Platform engineers, members of the software development support group and data
management, host application developers, and an external consultant.

15.2.1. PROCESSES AND STRUCTURES

Figure 15-4 shows the development process based on the Rational Unified Process
proposed by the e-Platform. It distinguishes between a business view and a technological
view on one hand and the three standard development disciplines (Requirements, Analysis
& Design, and Implementation) on the other.

Figure 15-4. e-Platform's analysis and design process.

The business view focuses on functional requirements and develops use case models and a
component landscape. In doing so, it explicitly aims at designing reusable business
components that provide their functions through services. The technological view deals
with the non-functional requirements and concentrates on the reference architecture based
on e-Platform blueprints. The application architecture is formed by the integration of the
business view and the technological view.

Figure 15-5 shows the key aspects of Winterthur's design process in more detail. In order
to capture the requirements, use case models, user interfaces, and conceptual business
models are developed. These roughly corresponded to the three tiers of the architecturethe
presentation layer, the application layer, and the domain service layer. The models are
used as a basis for the realization of the use case and the service design, and they consider
both static and dynamic aspects of the system. Whereas the static service design focuses
on the service interfaces and data elements, the dynamic service design addressed
workflow issues, that is, how service operations are to be combined in order to obtain the
business activity-oriented services identified in the design of the use-case realization.

Figure 15-5. Details of Winterthur's analysis and design process
(focused on the business view).

[View full size image]

In order to ensure that the general design process is actually applied to specific services, a
dedicated team called Application Services was established within the Winterthur Market
Unit Switzerland. One of its tasks is to advise the application project teams on how to
leverage the Service-Oriented Architecture in the best possible way. To do so, members of
the group support the business developers when new services were designed. The group
also offers training and instruction courses on its Service-Oriented Architecture,
service-oriented design principles, and repository use. It is also responsible for QA on
service definition.

15.2.2. SERVICE REPOSITORY

As shown in Figure 15-6, the repository contains information about available services. Note
that this information is provided at the contract levelit forms an abstraction of technical
details concerning implementation. The repository acts as a link between the more
conceptual levels of the business context and the more technological levels covering the
actual implementation.

Figure 15-6. The repository links conceptual level with technological
levels.

[View full size image]

The main purpose of this abstraction and layering is to guarantee independence from a
particular technological solution, which in turn significantly increases flexibility. Because a
service contract does not depend on whether the service is implemented using MOM, PL/1,
EJB, SOAP, or CORBA, it is possible to exchange service implementations with minor
modifications for client applications using the services. Such an exchange is concerned only
with the implementation and deployment on a different blueprint, whereas at the contract
layer there is no visible change. The major change concerns the corresponding technology
bindingthat is, the code that maps the service interface specified in the contract to a
particular technology.

The repository also contains metadata describing the implemented services, which are
useful for application designers and developers. This includes information such as service
ID, service name, service status, domain, owner, and short descriptions. The service
contract, also stored in the repository, additionally describes special cases, errors, quality
of service, versioning, etc. We provide a more detailed description of Winterthur's service
contracts and the implementation of the service repository in Section 15.3.

15.2.3. PROJECT MANAGEMENT

The Application Service Team, described beforehand, is responsible to make sure that SOA
is applied correctly. The team keeps the focus on reusability and captures and categorizes,
together with the data management team and the service owner, the data used in the
different applications.

Specific requirements with respect to project management arise from the fact that services
have to be designed so that they are as reusable as possible. In particular, the analysis
phase in which the basic business requirements are compiled becomes more complex.
Instead of simply involving the business experts for the new application, experts from
potential future applications have to be included in the design process. The Application
Service Team and the service owners therefore have to make sure that future requirements
are taken into consideration during the analysis phase in order to guarantee reusability of
the developed services.

The Application Services and the Data Management Team responsible for the analysis and
design of new services consist of seven employees. Their main task is to establish the
service contract, which serves as a basis for the IDL specification of the service interface,
and to implement the IDL and the interface module. Members of application development
teams then build the actual implementation of the services.

In general, a mixture of a top-down and bottom-up approach is used in Winterthur's
projects. On one hand, services are implemented when they are needed by applications.
On the other hand, services are implemented with reuse in mind, and technological
considerations are taken into account from the beginning. In particular, granularity of
services is designed with performance issues in mind; too finely grained services are
generally avoided because they pose performance risks due to the many time-consuming
remote calls that would be needed to perform a single business activity.

Change management is realized by using a versioning system. The repository contains
detailed information about the various service versions available, including expiry dates for
obsolete versions.

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.3. Technology
This section provides more detail about the technologies used to implement Winterthur's
SOA and the e-Platform. Winterthur's host applications had been mostly developed in PL/1
and COBOL, and most program maintenance still requires PL/1 and COBOL (IMS and CICS
on z/OS).

15.3.1. ARCHITECTURE

Figure 15-7 shows the different architectural issues to be dealt with in the technical part of
an application specification.

Figure 15-7. Technical part of application specification.
[View full size image]

Figure 15-8 provides a detailed overview of the e-Platform's internal structure. It consists
of HTML, Web services, Java clients in both Internet and intranet, secure proxies screening
high-level communication protocols at the entry of the Intranet, Web and application
servers, and enterprise information systems.

Figure 15-8. Internal structure of Winterthur's e-Platform.
[View full size image]

A key concept underlying Winterthur's SOA and its e-Platform are blueprints. These
blueprints are reusable reference architectures that propose standards concerning how
business components can be distributed and integrated. They specify technical aspects of
platform-specific environments, components, and protocols for various distribution
patterns.

Figure 15-9 contains two sample blueprints, one employing a remote communication
between an EJB and a CORBA service, and the other using a local communication between
an EJB and a domain service implemented in Java.

Figure 15-9. Sample blueprints for Winterthur's e-Platform.

The e-Platform contains blueprints for Java Clients, Servlets, EJBs, CORBA,
Message-oriented middleware, Database connectivity and File transfer.

15.3.2. REPOSITORY, SERVICE INTERFACES, AND CONTRACTS

The repository contains two main types of information: the descriptions of the enterprise
data elements at the level of attributes and the specification of services (see Figure 15-10
). The data element descriptions are reused for the database definition and for the
definition of the parameters within a service. All data elements must be approved by a
central unitthe data management team.

Figure 15-10. Service definitions are based on enterprise data element
definitions.

The application service team uses these data elements to define, in close cooperation with
the respective service owners, the detailed service specifications. Data elements and
service information are accessible for all developers using browsers within the Intranet.

So far, the focus of Winterthur's SOA development has been on synchronous services
offering a request-reply function. These services provide IDL interfaces and have been
implemented as CORBA services. It should be noted, however, that the contracts are
modeled independently of CORBA and are thus platform-independent. Currently, a second
type of service is under development that will offer message-type functionality.

The idea is to use WSDL for a protocol-independent service definition and implementation.
The following list contains some of the information that is included in the service contracts
and available through the repository:

Service description. Provides a high-level and a detailed description of the service and its
individual operations, including versioning.

Timetable. Provides information regarding the availability of the service in both test and
production systems.

Operation properties. Provides information concerning its granularity and specific
properties for each operation, e.g., concurrency, multiple calls.

Contract conditions. Provides information concerning pre- and post-conditions for each
operation.

Special cases. Provides explanations of special cases for each operation.

Service operations and signatures. Provides lists of input and output parameters with
detailed explanations concerning admissible values and their respective meanings for each
operation.

Errors. Provides a list of possible errors that can occur after operations are invoked for
each operation.

Service level. Provides quantitative information concerning the intended service level, i.e.,
average load/peak load per hour/day/month and response times.

15.3.3. CHOREOGRAPHY, SECURITY, AND MANAGEMENT

The SOA implemented at Winterthur is mainly concerned with providing basic services
using widely existing host functionality through service interfaces. Most services are
data-centric and thus leverage fundamental SOA functionality. At this point, however, the
SOA has not integrated the more advanced functionalities such as service composition.

Thus, there is currently no common modeling approach for the workflow used in the
applications accessing host service operations. Instead, the workflow is captured "only" at
the conceptual levelin the dynamic models of the use case realizations. Thus, the workflow
can be said to be the sum of all use cases. However, the workflow is coming more and
more into focus and is to be expected to play a major role in future enhancements of
Winterthur's SOA.

At this point, there is also no support for defining distributed transactions in Winterthur's
current SOA. One way to ensure transaction-like behavior is to develop a coarse-grained
(CORBA) service, spanning all PL/1 objects involved in the transaction. The latest release of
the e-Platform enhances the CORBA blueprint with distributed transactions. However,
because there are risks when relinquishing control of host transactions to "untrustworthy"
client systems (e.g., locking of critical system resources in cases where transactions are
not closed), different boards must decide how to best exploit new technical possibilities in
Winterthur's environment.

Winterthur's SOA is used by internal and external applications, and security is therefore a
major issue. The underlying framework will set credentials so that they will not appear in
the operations' signature (otherwise credentials and user ID could be modified
programmatically to obtain more privileges). These credentials are used to determine
whether a client is authorized to access the functionality provided by a service operation.

Finally, monitoring functions are provided by special platform services and tools that allow
an end-to-end monitoring of service execution. A small framework has been developed that
periodically calls test programs that check the status of host transactions and CORBA
adapters and transmit error reports should a host service be unavailable. These error
reports and the monitoring framework are accessible using an HTML-based browser
interface.

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

15.4. Lessons Learned, Benefits, and Perspectives
The introduction of the SOA has already delivered substantial benefits. The development of
new applications has been significantly simplified due to the flexible nature of the
implemented services and the resulting reusability.

What is particularly noteworthy is the fact that Winterthur has achieved these benefits by
using very simple and basic SOA concepts: service orientation, explicit contracts, reused
policies, and a descriptive but concise repository. Winterthur did not employ any advanced
SOA concepts, such as service composition or distributed transactions.

One of the major success factors was the efficient process established at Winterthur to
ensure reusability of developed services and e-Platform blueprints. However, it also
became clear that designing services with focus on reusability generates a considerable
overhead. It transpired that only one in three or four services was actually used by more
than one application. Additional new application frontends, however, are enhancing the
reuse rate. A further lesson was learned: design focused solely on reuse can lead to overly
fine-grained services (e.g., to have an overview of a customer or a contract, you might
have to call many fine-grained services to get all information related to an overview).
Performance will be less than optimal if the service is accessed remotely, which leads to
performance-optimized remote services that internally called fine-grained services
accessed by local interfaces. The same fine-grained services can be easily encapsulated by
a CORBA interface and called by a remote client. Further optimization was found in the
so-called "multiple" services. Rather than retrieve a single contract or person through a
single key, a whole list of business entities can be obtained with a single remote call using
a list of keys.

Also due to performance issues related to remote communication, both domain layer
services using CORBA and in some cases application layer services [3] were implemented on
the host.

[3] Process-centric services according to the terminology of this book.

One way of minimizing the overhead caused by reusability is to explicitly distinguish
between public and private services. Only the former are designed with reusability
considerations in mind, whereas the latter are to be used solely by the application for
which they were originally developed.

Apart from these qualifications, however, the reuse of implemented services was rather
successful. All applications using host data are migrating to use them through the newly
developed services. The SOA has therefore become the cornerstone of Winterthur's IT
integration.

Another major benefit is the widespread use of the repository. The information available in
the repository turned out to be an excellent documentation of the already implemented
functionality. In contrast to traditional documentation that quickly becomes complex and
voluminous, the information contained in the repository is very concise. This is mainly due
to the fact that the information to be published in the repository is restricted to essential
facts required to adequately use the service in applications. On the other hand, the simple
fact that the repository imposes a standardized format also contributes to its usability and
offers an advantage over traditional documentation, which is usually crudely structured.

The development of Winterthur's SOA and its underlying e-Platform still continues. The
main direction of enhancements concerns the removal of platform limitations, in particular
regarding the SOA support of message-type communication, EJBs, and Web services.

Whereas emphasis has been on host applications in the beginning, focus now shifts to the
application layer and non-host applications. Because the application layer is largely based
on EJBs, the main task is to extend the SOA standards, guidelines, and processes that are
currently based on synchronous CORBA to encompass EJBs, asynchronous messages, and
Web services.

Another area of extension concerns workflows. To date, workflows are not explicitly
modeled and supported in the e-Platform. They are only contained in the dynamic models
of use case realizations developed in the design phase. The integration of workflows to
support specification, automatic execution, monitoring, and optimization of workflows is
currently under investigation.

These extensions will be defined by different long-term Winterthur IT sub-strategies such
as the Swiss Insurance IT Platform definition, Integration strategy, Solution Delivery
Process, and the Technical Platform.

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 16. Credit Suisse Case Study
In this chapter, we will describe the introduction of a Service-Oriented Architecture at
Credit Suisse. The Credit Suisse Group (CSG) is a leading global financial services company
headquartered in Zurich. The business unit Credit Suisse Financial Services provides
private clients and small- and medium-sized companies with private banking and financial
advisory services, banking products, and pension and insurance solutions from Winterthur.
The business unit Credit Suisse First Boston, an investment bank, serves global
institutional, corporate, government, and individual clients in its role as a financial
intermediary. Credit Suisse Group's registered shares (CSGN) are listed in Switzerland and
in the form of American Depositary Shares (CSR) in New York. The Group employs around
60,000 staff worldwide. As of March 31, 2004, it reported assets under management of
CHF 1,241.3 billion.

Given the magnitude of operations, why did CSG decide to introduce an SOA? At the end of
the 1990s, the complexity of the Credit Suisse IT infrastructure reached a critical level. The
CIO made the decision to introduce an integration architecture based on a Service-Oriented
Architecture. After the successful introduction of an information bus providing synchronous
communication, Credit Suisse added an event bus for asynchronous communication.
Whereas the information bus connects host applications with application frontends, the
event bus is used for backend to backend integration. Currently, a third type of integration
bus operates using file transfer for communication. [1]

[1] Essentially, this creates an environment very similar to the one outlined in Chapter 9, Figure 9-2. The notable difference is that rather
than one software bus, three different busses are used. However, unlike in Figure 9-3, only one software bus technology per
communication model is used.

In general terms, the authors of this book are critical of the integration bus concept.
Firstly, the requirements for such an integration bus are usually too diverse to be covered
by a single, homogeneous framework. Secondly, innovation cycles for products and
standards in this area tend to be very short.

The approach taken by CSG, however, turned out to be very clever. They defined and
implemented an integration bus according to their most pressing needs and obtained
immediate benefits. They subsequently implemented a second bus that was based on
similar principles but that satisfied slightly different technical requirements and therefore
provided complementary benefits.

It is also noteworthy that this case study is very well complemented by various articles
that provide in many respects an even more detailed discussion of the technology and the
architecture (see [Ha03], [FMP99], [KM99]).

The case study presented in this chapter will show in detail how the SOA was implemented
at Credit Suisse, both at organizational and technical levels. Section 16.1 describes the
general scope of the Credit Suisse architecture, Section 16.2 discusses the organizational
structures and processes used to implement the SOA, Section 16.3 presents a more
technological perspective, and finally, Section 16.4 describes the lessons learned, the
benefits achieved by Credit Suisse, and future perspectives.

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.1. Project Scope
The central book entry system of Credit Suisse comprises approximately 5 million accounts
with roughly 218 million account movements per year. The service architecture described
in this chapter covers the banking business. Winterthur, [2] who also belong to the Credit
Suisse Group, have their own IT infrastructure.

[2] See Chapter 15 for the Winterthur case study.

The Credit Suisse IT infrastructure is typical of a large financial corporation and comprises
around 600 applications, approximately 12 million lines of code (counting only core
systems), and an application landscape based on heterogeneous platforms (IBM
mainframe, Unix, Windows) grown over several decades. The roots of its IT systems reach
back to the 1970s and terminal-based applications. At the end of the 1980s and the in the
early 1990s, client/server applications were added, based on the then-innovative 4GL
generators and object-oriented technologies using Smalltalk. With the rise of the Internet
and intranets, multi-tier architectures were favored, and today, new applications are
mostly built using Java. However, mainframe applications are still supported and updated,
and the mainframe continues to be the preferred platform for transaction-oriented
applications.

16.1.1. BUSINESS IMPACT

The main driver for the SOA introduction at CSG was the fact that the former IT
infrastructure could no longer support the required business functionality. Ad hoc solutions
for integrating IT systems, such as after mergers and acquisitions, were not successful.

Credit Suisse was dissatisfied with point-to-point integrations. [3] This had made
development of new applications extremely complex and sometimes unfeasible. Although
no business plan was compiled prior to introducing the SOA, the decision for the SOA was
made directly by the CIO in connection with two other major projects at Credit Suisse: the
reconstruction of the data centers, which was necessary due to a number of mergers and
acquisitions, and the clearing up of the data warehouse.

[3] In fact, Credit Suisse suffered from the classical middleware overload created by too many products and point-to-point connections.
Scenarios like that ultimately create the famous "integration spaghetti."

The SOA introduction started with small pilot projects in 1997, but it was the intention
from the very beginning to use it as a basis for the overall IT infrastructure of Credit
Suisse, in particular for providing host access functionality.

From the business point of view, the SOA infrastructure should become the basis for

• Multi-channel banking

• Online trading

• Consolidation of the core-business application portfolio

As the foundation of its SOA Credit Suisse designed a business-critical infrastructure that
was meant to provide

• Centralized administration and management

• 24-7 operations

• Support for several thousands concurrent users

• High throughput

• Sub-second response time

The applications built on top of the new infrastructure were supposed to provide access to
customers over the Internet and to employees over the intranet. This included all types of
clients. Finally, extra gateways were built to realize B2B integration with partners over the
Internet.

16.1.2. TECHNOLOGY IMPACT

According to [Ha03], CSG had five main goals when introducing its SOA-based integration
architecture:

Technical integration. The management of dependencies between technical platforms.

Logical integration. The management of dependencies between applications and
components at the level of business semantics.

Process and desktop integration. The integration of heterogeneous applications
according to business processes and end user workflows.

Integration of purchased software. The introduction of methods and tools to integrate
external software as efficiently as possible.

B2B integration. The integration with partners, suppliers, and customers.

CSG addressed these five goals with three different types of complementary integration
infrastructures, accompanied by a workflow infrastructure for process integration. The
Credit Suisse Information Bus supports synchronous communication, the Event Bus
Infrastructure supports asynchronous communication, and the Bulk Integration
Infrastructure uses file transfer as the basis for communication. Together, the three
infrastructures form the foundation of the Credit Suisse IT landscape, whose goal is to
connect business applications based on clearly defined contracts.

Figure 16-1 illustrates the domain-based integration approach underlying the Information
Bus. Communication across different domains, such as securities, sales support, logistics,
or data analysis, is achieved using the Information Bus and ensures a loose coupling
between domains. As you can see from these examples, some domains correspond to
products offered by Credit Suisse, whereas others are more horizontal and
product-independent.

Figure 16-1. The Information Bus integrates different domains.
[View full size image]

With respect to asynchronous communication, the main technical requirement was
guaranteed once-and-only-once delivery of messages. The main architectural requirements
for message-based interaction were

• Asynchronous connectivity and message transformation

• Real-time dissemination of critical data

• Static and content-based routing

• Topic-based publish-and-subscribe

• Point-to-point messaging

• Increased data consistency across multiple applications

• Integration of standard software

The backend core applications for integration were mainly running under IMS (80%) and
CICS (20%) on large S/390 mainframes. Applications were also hosted on Unix and
Windows servers. The application frontends, which were partly in use and partly under
development, were based on technologies such as J2EE, C++, Smalltalk, HTML, COM, and
Visual Basic.

When the Information Bus went live in 1999, five application frontends were in place,
providing 35 business services to about 800 users. One year later, available applications
had already risen to 21, with 173 business services and 9,000 users. These figures
increased rapidly to 500 business services in 2000, used by more than 50 application
frontends and over 100,000 users (this includes both Internet banking customers and
internal staff).

Currently, the information bus offers more than 700 services and handles between 1.5 and
2 million requests per day, with a total of 10 million requests per week or 50 million
requests per month. The Event Bus, which serves about 20 applications, processes another
500,000 messages per day.

Figure 16-2 shows the development of available services at CSG from 2000 to 2003. Figure
16-3 shows the corresponding development of service calls. The stagnation during 2001
and 2002 was due to the difficult business environment.

Figure 16-2. Development of available services at CSG from 2000 to
2003.

Figure 16-3. Development of service calls at CSG from 2000 to 2003.
[View full size image]

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.2. Implementation
Although the CIO backed the SOA, uncertainty remained, mainly regarding technical
issues. The main problem was its complexity and the overheads it created. Specifically,
ensuring reusability was considered by many as a major factor in the increase of the design
process cost. In addition, technical objections to the use of CORBA, which is the base of
CSG's service bus, arose. Host developers believed it to be too resource-intensive, and Java
developers argued that a pure J2EE approach would be more slender and thus preferable.

From the outset, Credit Suisse took this opposition seriously. The architecture was given a
strong, central position within the IT department, and it was made clear that exceptions
and deviations from the chosen approach would not be tolerated. Reuse was demanded,
documented, and aggressively marketed, as was decoupling of systems.

A strict pursuit of the aims of the SOA and the application of rigorous processes helped to
make the Credits Suisse SOA a success, and most opponents were eventually convinced by
the benefits obtained by the SOA.

16.2.1. PROCESSES AND STRUCTURES

Credit Suisse established two infrastructure teams dedicated to the establishment of the
SOA-based integration architectureone responsible for engineering the required
middleware, and the other supporting developers using the technology. These teams were
responsible for several different though related tasks and were supported by integration
architects from the central architecture department (see Figure 16-4).

Figure 16-4. Different teams at Credit Suisse support the projects and
maintain the SOA infrastructure.

First, the teams had to set up processes and structures accompanying the SOA
introduction. In particular, this concerned stipulations for the service contracts and
interfaces, in addition to the definition of a clear design and development process for
services.

Second, the team had to educate and support developers from the different business units
with respect to these concepts. The central challenge was to sell the concept of reusability,
which at first glance, generated nothing but overheads from the perspective of developers
and individual projects.

Finally, the teams were responsible for reviewing service definitions and thus acting as a
kind of quality assurance. Again, reusability was the key concept here and was also the
distinguishing factor compared to "traditional" project management. The team had to
ensure that service development followed the established processes and fulfilled the
requirements imposed by the integration architecture. In particular, it had to ensure that
business units did not succeed in circumventing the SOA and get permission from
management to make "exceptions."

One of the most important aspects of the SOA introduction was the establishment of a
clearly defined process for service development. This process started with a communication
between service consumers and service providers and resulted in a coarse-grained
specification.

Based on these specifications, a decision was taken to either develop a new service or to
use an already available service, which potentially had to be modified or extended to fit the
new application. The architecture board reviewed this decision before the design and
implementation of the service could commence.

The architecture board is composed of experienced service designers from the central
architecture group and from development support.

Service development proceeded in a strict bottom-up mannerno prior planning of the
service landscape took place. Instead, a service would be defined and implemented
whenever a specific client application required the respective functionality (see Figure 16-5
). This enabled the construction of the service architecture to take place in an efficient and
incremental fashion.

Figure 16-5. The SOA-based design process at CSG: Requests are
generated bottom-up, and quality assurance is ensured top-down.

16.2.2. SERVICE REPOSITORY

Credit Suisse uses a central repository to publish all relevant information about a service.
The main building blocks are the business-level description of the service and the technical
interface specification based on IDL (CORBA's Interface Definition Language).

Usually, different user groups require both descriptions types, but in some cases,
developers access the business-level description to first produce the coarse-grained
specification and then the IDL description during the actual implementation phase.

The repository also contains information about service updates, which is of particular
importance for enhancing Credit Suisse services.

16.2.3. PROJECT MANAGEMENT

As explained previously, the complexity of the CSG IT infrastructure reached a critical level
at the end of the 1990s. Because a complete reimplementation of the existing functionality
was economically and technologically infeasible, the Managed Evolution [Ha03] approach
was adopted, whereby the system is transformed step-by-step into a new state. Each
project in this step-by-step process is expected to contribute to the structural optimization
of the IT system.

Figure 16-6 illustrates this principle, which comprises two basic dimensions of an IT
infrastructure: IT efficiency on one hand and business value on the other. Whereas IT
efficiency captures how quickly and inexpensively the system can be changed, business
value regards the benefit of the infrastructure for its users, that is, the business units in
the enterprise. Each project should ideally contribute positively on both dimensions (see
Chapter 1, "An Enterprise IT Renovation Roadmap").

Figure 16-6. The principle of Managed Evolution.

In order to guarantee this level of contribution to the overall architecture, clear guidelines,
processes, and structures must be established to help distinguish "good changes from bad
ones." Credit Suisse has a special architecture team responsible for defining such
guidelines and monitoring their application with the chief architect reporting directly to the
CIO.

The Credit Suisse methodology for the management of concrete business projects is mainly
based on the waterfall model. However, the critical success factor of business projects at
Credit Suisse is its control over deliveries such as interface specifications and coordination
with the appropriate infrastructure teams.

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.3. Technology
This section describes in more detail the technology used to construct the SOA at Credit
Suisse. It comprises a sketch of the architecture used to implement the information and
event buses, an overview of the repository structure, the contracts and the service
interfaces, and a summary of how security, workflows, and management are handled.

16.3.1. ARCHITECTURE

As we mentioned earlier, the integration architecture deployed at Credit Suisse combines
three different integration paradigms.

Whereas the Credit Suisse Service Infrastructure provides synchronous communication and
is used for providing frontend access to host applications, the Event Bus Infrastructure
(EBI) uses asynchronous communication to integrate new non-host applications. Finally,
the Bulk Integration Infrastructure uses file transfer for communication.

16.3.1.1 Synchronous Integration with the CSIB

When introducing the Information Bus, CSG began with an initial structuring of the
existing applications, which was achieved by partitioning the applications into
approximately 20 domains (refer to Figure 16-1) where an application domain combines all
data and applications belonging to a certain business area. Figure 16-7 shows how
applications are encapsulated inside domains. Whereas coupling is tight within a domain, it
is loose across domains where coupling uses the information bus. [4]

[4] The concept of a domain at CSG is largely similar to the notion of service in this book. The approach taken by CSG is somewhat
similar to the approach laid out in Section 10.2.1, "Service Enablement," and depicted in Figure 10-4. However, CSG decided not to make
an effort to refactor any logic within the domain or between domains, where communication was not through one of the service buses.
Thus, the actual applications remain in fact tightly coupled, even if the service interfaces might not expose the coupling to the client. Over
time, replacement and upgrades of the underlying application and changes in the inter-domain communication models might facilitate an
adoption of decoupled infrastructure without any significant impact on the already existing service clients.

Figure 16-7. Partitioning of applications into domains, which are
loosely coupled.

The CSIB was first implemented using CORBA technology. Figure 16-8 provides a detailed
overview of the initial architecture (which did not include the Event Bus) and the
respective technologies used for the different layers.

Figure 16-8. Initial implementation of the Credit Suisse Information
Bus.

As an alternative to CORBA, DCE and DCOM were evaluated but discarded. The integration
of CORBA and EJBs used to implement the application frontends was built by Credit
Suisse. Due to strict abstraction from the underlying technology, CORBA could in principle
be replaced by another technology, such as Web services. So far, experiences with CORBA
have been mainly positive, and it is still used in implementing new services.

16.3.1.2 Asynchronous Integration with the EBI

In 2000, when the Information Bus had been successfully introduced and had proven to be
robust and scaleable, Credit Suisse decided to add a second integration platform. The basic
idea was to address backend-to-backend application integration (within one domain or
across different domains) with the same basic concepts that had proven successful when
introducing the SOA and the Information Bus.

Credit Suisse calls its approach of adding an event bus to the Information Bus a
generalization of the SOA toward a component-based architecture. They reserve the term
"service" for the synchronous communication used in the Information Bus. However, the
approach to SOA advocated in this book is much more generic and also comprises
asynchronous communication as used in the Credit Suisse event bus.

As we already stressed, it is not so much the technology that characterizes a SOA as the
general methodology associated with it. This is nicely illustrated by the fact that Credit
Suisse "reused" all concepts developed in conjunction with the introduction of the
information bus for the introduction of the event bus. Furthermore, CSIB and the EBI share
the same service implementations, which facilitates the reuse of business logic and live
data sharing beyond the scope of a single infrastructure, demonstrating that the CSG SOA
is truly technology-independent.

The Event Bus Infrastructure is currently a message-based integration solution supporting
topic-based routing and transformations. At the moment, it is not process-basedthat is,
there are no workbaskets and no specific process layer. However, extensions in this
direction are envisaged for the mid-term future (see Figure 16-9).

Figure 16-9. CSG's integration architecture comprising the event bus.

Technically, the EBI is based on message queues. The current implementation relies on
products of IBM's WebSphere suite. WebSphere MQ (MQ Series) provides the reliable base
for the transportation and storage of messages, while WebSphere Business Integration
Message Broker provides facilities for message transformation and publish-and-subscribe.

Credit Suisse particularly stressed the fundamental importance of managed interfaces and
contracts. These two key prerequisites for successfully decoupling applications are used
rigorously by Credit Suisse for both the information and event buses.

In fact, the boards and processes for the event bus are identical to those established for
the Information Bus. This is not limited to the abstract nature of the design and
development process but also covers technical details. Thus, the service interfaces for the
event bus messages are specified using IDL. Moreover, events and messages using the
same type of information as an existing information bus service reuse the data structures
already modeled for the service.

16.3.1.3 Bulk Integration Infrastructure

The Bulk Integration Infrastructure is the third type of software bus to be developed at
CSG.

Figure 16-10 illustrates the interplay between the various CSG software buses. It already
contains the third infrastructure component, which is currently under construction: a bulk
integration infrastructure, which will be responsible for a consistent management of
file-based data exchange.

Figure 16-10. Interplay between Information Bus and event bus.

Again, this third infrastructure component will reuse the same methodology as both the
information and event buses. It is currently under development and uses conventional
point-to-point file transfer. The goal is to establish a file broker to support a centralized
control of the various transfers. This extension is currently in the evaluation phase.

16.3.2. REPOSITORY, SERVICE INTERFACES, AND CONTRACTS

The repository has been developed by CSG and contains information regarding design and
management of services and events. For each service, the following information is
available:

Service interface. The IDL interface specification of the service.

Properties. Specific properties of the service, such as effect on data (e.g., read, write),
availability (e.g., public, private), and current status (e.g., test, production).

Planning. Information regarding dates on which tests have occurred or are planned and
the date on which the service went into production.

Contact information. Relevant contact persons, such as developers, owner, designer,
and/or client/user.

Implementation details. Information concerning the service implementation, such as
modules and databases used.

Service conditions. A textual description of preconditions and corresponding post
conditions guaranteed by the service.

Exceptions. A list of exception codes with brief explanations.

Service level. Information regarding the target response times (round trips) and expected
requests per hour, day, and month (average and maximum).

Parameter descriptions. A detailed description of the in and out arguments of the
service.

16.3.3. CHOREOGRAPHY, SECURITY, AND MANAGEMENT

The SOA implemented at Credit Suisse does not incorporate complex SOA solutions for
choreography, security, or management.

Workflow components are only used for workflows involving human users. At the service
level, however, there is no explicit process modeling in which service operations are
orchestrated into complex workflows. CSG's SOA can be classified as networked with
respect to its expansion stage (see Chapter 6, "The Architectural Roadmap"). Credit Suisse
closely monitors the growing functionality provided by application servers in this area and
is considering the integration of service composition and workflow modeling for future
enhancements of its SOA.

CSG uses the mechanisms based on optimistic logging that are depicted in Chapter 8, "
Process Integrity," to implement distributed transactions. If an operation of a logical
transaction fails, logged information is used to trigger compensating actions. These
compensations reverse the effects of already executed operations of the same logical
transaction. There are no ACID transactions across the boundary of a domain.

The security solution employed at Credit Suisse is based on PKI (Public Key
Infrastructure). The PKI solution is used for internal integration only at the moment.
External integration currently operates using dedicated connections. However, a PKI
solution for external integration is under construction, although this type of security is
more suited to current enterprise application landscapes (see Chapter 9, "Infrastructure of
a Service Bus").

To manage the distributed services and the underlying infrastructure, a wide variety of
tools are used. Special CORBA tools support general system management. In addition,
Credit Suisse developed tools that access and process data stored in a central logging
component. This logging component contains detailed information regarding executed
services, including information on data input and output during service execution.

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16.4. Lessons Learned, Benefits, and Perspectives
The SOA implemented at Credit Suisse is now firmly established within the enterprise and
is considered to be a major success. The main benefits experienced can be summarized as
follows:

Reuse of services. The business services are used across applications. Although the
average reuse factor is only 1.6 when taking into account all services, some business
services are used by up to 12 applications. The low average factor is mainly due to the fact
that many services are currently used by a single application. Because services are built as
soon as there is a single user, it can take some time before a second user materializes.
Reuse is driven by the centralized repository containing the service interfaces and detailed
documentations.

More efficient application development. Due mainly to the reuse of services,
application development has been accelerated considerably. Usually, when a new
application is under development, 75 to 80 percent of the required services are already
available in the repository. This improves time-to-market of new solutions dramatically and
also offers significant cost savings for the development process.

Increase of collaboration. Another benefit consists of the increased collaboration
between the business unit developers and the programmers implementing the core
business applications. It was also observed that experienced PL/1 programmers, who had
become demotivated over the years, participated actively in the development process.

However, these benefits were not achieved without hard work. For one thing, there was
continuous uncertainty regarding the approach taken with the integration architecture. This
included, for example, complaints that CORBA was too resource-intensive, too complex,
and too slow. This objection was not broad-based, however, and the consistent support
from top management overcame it.

There was also a critical stage when the Information Bus threatened to fall victim to its
own success. As more users accessed the applications built on top of the CSIB,
performance, reliability, and availability became indispensable. Again, having management
backing and sufficient budget helped to overcome problems during this critical phase.

It also transpired that the decoupling, which had been achieved for internal integration, did
not necessarily suffice for external integration, which posed even more demanding
requirements on the degree of decoupling.

Finally, the strict bottom-up approach applied throughout the development of the SOA will
probably be complemented by top-down considerations in the future. This included more
systematic decisions concerning reuse and more specific targets for service developers.
One idea is to reduce the overhead for the development of services that might never be
reused. Another aspect is the identification of "missing" services, even if they are not
immediately needed by an application.

Credit Suisse stresses four main SOA aspects that were crucial to its success:

• Interfaces

• Processes

• Management commitment

• Solid technology

Evidence for the success of the Credit Suisse SOA-based integration architecture is based
on the fact that the concepts and methodologies initially developed for the synchronous
information bus could be reused one-to-one when introducing the asynchronous event bus.
Furthermore, the implementation of the Bulk Integration Infrastructure is also based on
the same foundation. This demonstrates that both the concepts and the methodology
actually produced the desired results and that they are independent from the underlying
technology.

References

[Ha03] Hagen, C. Integrationsarchitektur der Credit Suisse. Enterprise Application
Integration - Flexibilisierung komplexer Unternehmensarchitekturen. GITO-Verlag, Berlin,
2003.

[FMP99] Froidevaux, W. S. Murer and M. Prater . The Mainframe as a High-Available, Highly
scalable CORBA Platform. International Workshop on Reliable Middleware Systems, October
1999.

[KM99] Koch, T. and S. Murer . Service Architecture Integrates Mainframes in a CORBA
Environment, 3rd IEEE conf. on Enterprise Distributed Object Computing, September
1999.

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Chapter 17. Halifax Bank Of Scotland:
IF.com
Halifax Bank of Scotland (HBoS) is a UK Financial Services provider with divisions in Retail
Banking, Insurance & Investment, Business Banking, Corporate Banking, and Treasury.
HBoS is the UK's largest mortgage and savings provider with a customer base of about 22
million. The annual results of 2003 reported £3.8 billion profit before tax and £408 billion
assets under management. HBoS group was formed through the merger of Halifax and
Bank of Scotland.

Intelligent Finance was launched as a division of Halifax plc with the aim of attracting new
customers from outside Halifax and specifically to target the UK clearing banks. Intelligent
Finance was launched as Project Greenfield in 2000, starting an entire new banking
operation from scratch. Three years later, by the end of 2003, Intelligent Finance had
820,000 customer accounts, representing assets of £15.5 billion. In March 2004,
Intelligent Finance announced that it had broken even in 2003the project had been a huge
success.

In order to prevail in a highly competitive market, a unique product concept had to be
devised, enabling customers to link a range of personal banking productsmortgages, credit
cards, personal loans, savings, and current accountsin any chosen combination with
interest charged only on the difference between their debit and credit balances.

In order to enable Intelligent Finance to provide cost-effective products, it was decided to
use only direct channelsthat is, not to rely on expensive branch offices. Because market
research at the time showed that customers would prefer to do business with a bank that
combined Internet banking with phone banking, it was decided to offer a solution that
combined telephone and Web access.

At the heart of the Intelligent Finance system is a generic banking engine, which offers
access to products and services for the different customer access channels. The Intelligent
Finance system was probably one of the largest and most advanced SOA deployments in
the Financial Services industry in Europe at the time. Because of time pressure under
which the project was deliveredit took almost a year for the complete implementation of
the bankit was decided early on in the project to take a full-blown SOA approach for its
transactional aspects. The banking engine provides a suite of XML Web services, processing
over 1,000,000 SOAP transactions a day. [1] This chapter will take a closer look at the history
of the project, the impact that the SOA approach had on the overall architecture, and the
lessons learned in the project.

[1] Intelligent Finance adopted SOAP in the very early stages of the specification process. The SOAP version in use was upgraded several
times throughout the project, in order to stay in line with the development of the SOAP specification. Service interfaces where initially
defined in a proprietary, XML-based IDL, which was later updated to the emerging WSDL standard.

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.1. Project Scope
Before delving deeper into the technical details of the Intelligent Finance project, we will
look at the scope of the project from both a business and technology point of view.

17.1.1. BUSINESS IMPACT

In 1999, Halifax was one of the most respected banks in the UK but was also
overshadowed by the "big four"Barclays, Royal Bank of Scotland, Lloyds TSB, and HSBC
(Halifax ranked fifth at the time). These four banks together controlled over 80% of the UK
banking market in 1999. In order to attack the market share of the "big four," Halifax
needed a distinct offering, which would differentiate Halifax in the market, as shown in
Figure 17-1.

Figure 17-1. Competition and customer demand were the main drivers
for Halifax to move toward new innovative banking products and

modern access channels.

At the same time, the UK banking market had seen something of an e-banking gold rush in
1999, with the Co-operative Bank's Smile, followed by Prudential's Egg, HSBC First Direct's
'Little Fella,' and Abbey National's Cahoot launched in quick succession.

As a result, Halifax was under huge pressure to deliver their new bank in an extremely
tight timeframe. Halifax management at the time estimated that they would have about
one year to execute their plan and create a product that was good enough to succeed in
this highly competitive market.

17.1.1.1 Greenfield Project

In order to meet these challenging timelines, Halifax decided to invest GPB 120 million to
build the new bank. In October 1999, Halifax hired Jim Spowart, the former chief executive
of Standard Life Bank, to head the new company, which was initially called Greenfield.
Three months later, the new bank identity was rolled out with the brand Intelligent
Finance.

The benefit of being given a blank sheet of paper to create what was internally dubbed the
bank of the future was that there were no legaciesthe IF management team was free to
reinvent the ways the bank should look and how it should interact with its customers.

But there were also some obvious challenges and disadvantages in the Greenfield
approach: There were literally no existing structures or processes; everything had to be
invented from scratch.

17.1.1.2 Offsetting

In order to differentiate itself in the market, Intelligent Finance adopted a new concept,
called offsetting. CEO Jim Spowart and his team developed the concept of inter-linked
accounts, which they called jars. These jars would allow customers to see how the money
in their debit and credit balances measured up. They envisaged an offsetting function
across all products. As a result, customers are only charged interest on the money they
actually owe the bank. For example, if a customer had borrowings of £150,000 and
£50,000 in savings and/or a current account with Intelligent Finance, interest would only
be charged on the £100,000 outstanding loan, in return for no interest being charged on
the savings or current account. Because no interest is earned on credit balances, the
customer is not required to pay tax. Over the term of the loan, this can save thousands in
interest charges and enable the customer to pay off the loan early.

17.1.1.3 The IF.com Success Story

As we mentioned earlier, since it fully launched in November 2000, Intelligent Finance has
been a huge success. In November 2001, Intelligent Finance announced that it had a total
of £8.9 billion in balances in hand and forecast to complete. Savings and current account
balances amounted to £2 billion.

About one year laterin February 2003Intelligent Finance announced that savings and
current account balances increased by 50 percent to £3.3 billion, and customer accounts
doubled to 600,000. In March 2004, Intelligent Finance announced that break-even was
achieved the previous year. By the end of 2003, the bank had assets of £15.5 billions, with
customer accounts reaching 820,000. Figure 17-2 provides an overview of Intelligent
Finance's development from a business point of view.

Figure 17-2. Timeline of Halifax Intelligent Finance project.
[View full size image]

17.1.2. TECHNOLOGY IMPACT

The decision to build the new bank on a green field also had a huge impact on the
technical architecture. On one hand, it is often easier to develop new systems without
worrying about existing systems that require an integration effort. On the other hand,
starting from scratch involves a lot of decisions that do not have to be made when you
have existing systems. Given the extreme time pressures of this project, many decisions
were made very rapidly. This included hiring and training over 1,000 new staff members,
finding office space, putting management infrastructure into place, and designing the
actual software architecture.

17.1.2.1 IF's Service Architecture

At the heart of the architecture is the IF Banking Engine (initially referred to as OnePlan
Engine). This engine comprises three major parts: Open Account, Fulfillment, and Service
Request. In addition, it provides abstractions for business entities such as Customer,
Financial Consolidation, and Underwriting Modeling and infrastructure services such as
Process (Workflow), Alerts, and Messaging.

The IF architecture had to integrate a large number of heterogeneous sub-systems,
including back-office and front-office systems. The back-office systems include customer
account management systems, credit scoring, links to other banks and external credit-card
providers, scanning and imaging, document management, printing, and workflow
management. The user access channels include call center and IVR (Interactive Voice
Recognition), Web channel, and email. Figure 17-3 provides an overview of the
Service-Oriented Architecture as implemented by Intelligent Finance.

Figure 17-3. Intelligent Finance's OnePlan Engine acts as the hub in
the center of its banking application landscape.

[View full size image]

17.1.2.2 Basic, Intermediary, and Process-Oriented Services

Referring to our service classification as defined in Chapter 5, "Services as Building
Blocks," the Intelligent Finance service architecture can be divided into two service layers:
a large number of basic services in the backend and one very large service in the middle,
which is a mixture between a process-centric and an intermediary service.

There are different kinds of basic services in the backend. A good example is the
Halifax-owned current account system, which provides XML-based services for accessing
customer accounts that reside on the mainframe. Intelligent Finance decided to leverage
this existing system from Halifax and to combine it with an off-the-shelf banking package
that added mortgage, savings, and personal loan accounts to the existing account
functionality on the Halifax systems.

The second service layer in the system is occupied by one very large service, which
represents the Intelligent Finance banking engine, covering the functionality required to
provide the seamless integration of the different accounts.

Technically, the banking engine represents a mixture between a process-centric service
and an intermediary service. For example, the banking engine provides access to the
different customer accounts that reside on different sub-systems. This part of the banking
engine functionality does not really add much business functionality; it has the
characteristics of a service access layer (see Chapters 5 and 6) designed to provide a
unified interface to a set of basic services with heterogeneous service access technology.
Other parts of the banking engine service provide process-centric logic. For example, all
the service request features are provided through the banking engine, such as "replace lost
credit card." All the service request features of the banking engine are based on a workflow
engine. The banking engine provides the interface between the workflow engine and the
user access channels through a set of process-oriented service interfaces. Approximately
250 different service request types are implemented this way.

Another set of banking engine interfaces is dedicated to the offsetting functionality of the
bank. Again, these interfaces combine the characteristics of process-oriented and
intermediary services. On one hand, the banking engine service provides the necessary
process functionality that is required for customers to control the balances on their
individual accounts. On the other hand, the banking engine acts as an intermediary service
to the extremely complex calculations in the basic services, which take place, for example,
if mortgage and credit-card interest is being set off against interest on savings.

The design of the centralized banking engine service provides many benefits to the
frontends (user access channels) that access the service. For example, the current design
enables all user access channels to share the same functionality and provide end
customers with a consistent view throughout the different access channels. In addition, the
design enabled very efficient integration between the different access channel
technologies. For example, the call center application provides agents with co-browsing
capability (see Chapter 10), effectively enabling them to get exactly the same view that
the end user would get on his own data through the Internet. In addition, call center
agents have a so-called super screen, which provides additional information, such as the
customer's contact history.

On the other hand, the centralized design of the banking engine service also has some
disadvantages, which we will discuss later. The most important problem related to the
design of the service is the lack of modularity and the cross-dependencies between the
different interfaces provided by the service, which in particular make development and
maintenance of the service difficult. Given the tough schedule the Intelligent Finance team
was under when designing the first version of the system, this issue simply was less
important; the team is currently in the process of addressing it successfully.

17.1.2.3 Project Schedule

Fueled by the fierce competition in the UK banking market and the boom in Internet-based
e-banks, the schedule of the Intelligent Finance project was extremely tight. Figure 17-4
provides an overview of the most important events that led to the successful launch of the
bank at the end of the year 2000.

Figure 17-4. Development schedule of IF.COM.
[View full size image]

After the decision was made in the middle of 1999 to go ahead with the project, Halifax
started to recruit the core team to find key suppliers of technology and IT services and to
undertake all the associated activities necessary to set up the bank.

By the end of 1999, the initial architecture of the system was finalized, including the
service design for the core banking engine. The actual development of the system mainly
happened in the first half of 2000, with ongoing integration tests, unit test, and scalability
tests happening in the middle of 2000. During the peak time of the project, 500
consultants, project managers, and developers were involved.

Given the scale and timeframe of the undertaking, it must be credited to the skills and
commitment of the project team that the actual launch of the system went smoothly and
without any major glitches. While other organizations experienced serious problems during
the launch of their Internet identities in 1999, the Intelligent Finance was a huge success
from the very beginning.

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.2. Implementation
In this section, we describe the key implementation details of the Intelligent Finance
project, including the service implementation concept, service repository, and project
management.

17.2.1. XML SERVICES

Because of the extremely tight schedule and the high integration requirements of the
multi-channel architecture, it was decided early on in the project that existing EAI
blueprints and middleware technology would not be suitable for this project, due to their
long and complex implementation cycles.

XML had just emerged as a new and flexible toolkit that enabled high productivity and
provided very good ad-hoc integration features. It was therefore decided to use XML as
the lingua franca within the technical architecture. However, although the great flexibility
of XML provided a huge benefit over more stringent integration technologies such as
CORBA, this flexibility also represented a problem in many respects. Especially in an
environment where requirements are changing on a daily basis, it is often tricky to strike a
good balance between flexibility and strictness.

Approximately 250 different service request types exist in this system. A way was needed
to leverage the XML technology to model the behavior of the Intelligent Finance banking
engine, which was at the heart of the system architecture. WSDL and SOAP were new
standards at the time, but the architecture team decided to adopt them to specify the
interfaces of the banking engine anyway. The often-problematic experience with
distributed object systems that the architecture team had made in many previous projects
naturally led to the adoption of a Service-Oriented Architecture. Even if the term was not
defined at the time, the underlying concepts were applied in the design of the bank.

17.2.2. SERVICE REPOSITORY

Intelligent Finance uses the CCC Harvest source control system as the central service
repository for all service definitions used by the project. All services are defined as XML
Schema definitions and WSDL definitions.

The service repository and the service definitions in it are managed by a technical architect
who holds the role of XML Tsar (this role is described in more detail in the following project
management section). The XML Tsar works with the different development streams as well
as the business side to develop and maintain the service definitions.

The content of the service repository is used by the IF.com build manager to generate
type-safe APIs and stubs for a variety of different programming languages, including Java,
C++, and VB (see Figure 17-5). These stubs enable client- and server-side programmers
to write service components and access them in a transparent way. These stubs are
managed in separate repositories together with the actual source code of the application.
One can debate whether it makes sense to actually manage the generated code in a
repository because one should be able to regenerate the stubs at a later point in time.
However, there is a danger that the exact version of the compiler used for the particular
build in question might not be available any more, and therefore there is a danger that one
would not be able to reconstruct an older version of a build. For this reason, it was decided
to include the generated code in the source code repository.

Figure 17-5. IF.com service repository.

17.2.3. PROJECT MANAGEMENT

The huge scale and extremely ambitious schedule of this project put significant pressure
on project managers. Starting from scratch, the Intelligent Finance management team had
to build the entire Intelligent Finance organization, including HR, sales, marketing, legal,
IT development and operations staff, call center staff and management, and the banking
back-office. In parallel, every piece of infrastructure had to be put in place from scratch,
including offices for the development team, plus the acquisition of two new buildings for
the call center and banking operations. In addition, communications infrastructure had to
be put in place, including telephony and IP networks.

17.2.3.1 Design in Action

The IT implementation project was probably the most critical and most complex piece of
the puzzle. The basis for the IT implementation project was the Design in Action plan
(DIA). The DIA was created in about eight weeks, providing a detailed outline for
addressing the key challenges of the project. The DIA included the blueprint for the
multi-channel architecture of the bank, the banking engine with the balance netting
features, and the backend integration. The DIA also provided a delivery program, including
mobilization plans, training plans, and an outline of the required systems infrastructure.

The implementation of the mobilization plan took about three months, at the end of which
500 technical staff were brought on-site to the new development center, plus a large
number of on-site technicians from IT systems suppliers.

17.2.3.2 Work Streams and IT Steering Committee

A cornerstone of the project management strategy was the division of the project into 23
different work streams, including banking engine, architecture, service design, DB design,
workflow, mainframe integration, Web design, call center, and so forth. This structure
helped to reduce some of the hugely complex dependencies between the different tasks
that had to be executed in parallel.

An IT steering committee was responsible for coordinating the work of the different work
streams. The steering committee consisted of the managers from the different work
streams plus members from the business side and the architecture team.

17.2.3.3 Architecture Board

The architecture board consisted of six senior IT architects who were responsible for the
overall design of the new bank. This included the system hardware and software
infrastructure, the design of the XML service middleware, the service contracts themselves,
the database design, the integration with the backend systems, control, and event flow,
and so on.

17.2.3.4 The XML Tsar and His XML Tsardom

While the IT steering committee was a great management tool for coordinating the work of
the 23 work steams on the project level, an essential piece was missing from the
beginning. As it turned out, the people in each work stream initially had only vague ideas
about how they would integrate their own functionality with the functionality provided or
required by the other work streams on the technical level. Although XML was set as the
default way for describing interactions and data exchange between the components from
the different work streams, there was a clear lack of communication and coordination of the
interfaces between the different sub-systems.

As we mentioned before, in order to address this problem, the architecture board decided
to create the role of XML Tsar. This person was given the responsibility of coordinating the
development of the technical interfaces between the components implemented by the
different work streams.

The XML Tsar assembled technical representatives from each work stream in his XML
Tsardom, including representatives from open account, service request, workflow, call
center, IVR, FundsTransfer, and document management.

The XML Tsar and his team met on a weekly basis to discuss and define the evolution of
the XML-based service definitions, that is, the XML Schemas and WSDL definitions. The
most important goal was to stabilize the development process and to reduce friction losses
due to unstable interface specifications.

Each work stream actually sent two members to the weekly meetings, an XML designer and
a build engineer. The XML designer was responsible for the coordination of the XML
specifications. The XML build engineer was responsible for taking the newly released XML
specifications and using the WSDL compiler to generate corresponding stubs, which would
be used in his team. Given the huge diversity of technical staffranging from Web designers
and junior programmers to senior EJB and mainframe developersit was essential to include
the role of XML build engineer in the concept of XML Tsardom to ensure consistency
amongst the different programmers. In fact, the majority of developers in the project was
never aware of the underlying XML-based service infrastructurethey stayed in their
particular programming language environment, using the stubs to provide service
components to other work streams or to call into components provided by other work
streams.

As would be expected, the impact of changes to the XML service definitions on the internal
release cycle of the project was quite significantespecially in the late phases of the
development, even small changes could have severe effects on the unit integration and
test schedule. The XML Tsar therefore also closely cooperated with the IT steering
committee and the project's release managers.

An interesting aspect of the structure of the XML Tsardom was that it enabled
communication between key technical people from different work streams for the first time.
The managers of the different work streams who met in the IT steering committee
meetings tended to discuss topics related to the overall status of the project. On the other
hand, the technical people who met in the XML Tsardom meetings had a very different
perspective, which focused more on the technical details of the interfaces, and for most of
them, the XML Tsardom quickly became the most important platform for communicating
with members from the other work streams on the technical level. This helped significantly
to reduce friction losses due to inconsistencies between the service interfaces of the
different sub-systems.

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

17.3. Technology
Having discussed the implementation aspects of the project, we now want to take a closer
look at the actual technology employed. This discussion will cover the technical
architecture, XML service definitions, and technical infrastructure.

17.3.1. ARCHITECTURE

The technical architecture of the IF.com system required the integration of a wide range of
heterogeneous technologies. The banking engine in the Mid-Tier is implemented based on
Java and BEA WebLogic. The Web Channel (Web server to render HTML pages) is based
entirely on Microsoft. This is due to the fact that IF already had a security approval for this
Microsoft-based architecture based on their first-generation online bank. Call center and
IVR (Interactive Voice Recognition) are based on the Genesys CTI suite, using customized
C and C++ on Unix. In the backend, a variety of mainframe, Unix, and NT systems had to
be integrated. Figure 17-6 provides a high-level overview of the technical architecture of
the system.

Figure 17-6. Technical architecture of IF.COM.

17.3.2. SERVICE REPOSITORY, SERVICE INTERFACES, AND
CONTRACTS

As we discussed previously, the IF.com service architecture is divided into two main
layers: a number of basic services in the backend, and a central service in the middle,
which is a mixture of an intermediary and a process-centric service. All services are
"hard-wired" through configuration filesthat is, there is no explicit service registry. Given
the nature of the project (all services are controlled by the same project), this approach
makes sense. The following describes the service operations and contracts of the banking
engine service and the basic services in the backend.

17.3.2.1 Basic Services

The basic services implemented by the Intelligent Finance system are based on a number
of very different technologies, ranging from CORBA to DCOM to XML and MQ Series.

Interestingly, Halifax itself started to develop a Service-Oriented Architecture for its
mainframe-based core banking system, which was also used in the Intelligent Finance
project. The so-called message switch for the Halifax mainframe is based on XML and MQ
Series. A technique similar to the one described in Chapter 3 is used to simulate
synchronous service operations by using message correlation to group matching requests
and responses together.

17.3.2.2 Banking Engine Services

The IF.com banking engine is based on approximately 1,300 XML Schema definitions, 120
WSDL Web service interfaces, and 600 Web service operations. Halifax is now processing
over 1,000,000 XML SOAP transactions a day. This makes Halifax Intelligent Finance one of
the biggest and most successful Web services projects today.

The banking engine service is divided into a number of different namespaces, including
Common, ContactCentre, Workflow, OpenAccount, PersonalAdvisors, QuickQuote, and
Service Request. The OpenAccount namespace, for example, includes service interfaces
such as AddressMgr, ApplicationMgr, BroadRequest, OfferEngine,
CreditCardApplication, CurrentAccountApplication, and so forth. The OfferEngine
includes, for example, XML Schema definitions such as DebtType, MortgageProductDetails
, and MortgageOffer. The OfferEngine service interface provides operations such as
renegotiateMortgageOffer(), getMortgageOfferAcceptance(), and so on.

In general, the granularity of service operations is closely tied to the granularity of screens
used by the Web channel and call center channel.

The banking engine service runs on a standard J2EE application server, using session
beans to implement service interfaces. To support the SOAP runtime protocol, a WSDL
compiler and code generator was used. For example, it is able to generate Java skeletons
that accept incoming SOAP messages and dispatch them to the Java session beans (refer
to Figure 17-6). The same tool was used to generate VB client code (for the IIS-based Web
servers) and C++ client code (for the CTI product that provided computer telephony
integration for the call center). Obviously, today this functionality would be available
out-of-the-box for most programming platforms, but in 1999/2000, XML Web services
technology was just emerging, and therefore proprietary compilers were developed to
support early version of the WSDL and SOAP specifications.

17.3.2.3 Service Versus Service Interfaces

Recall our discussion on different service types in Chapter 5. One of the key messages was
that data ownership amongst services has to be clear and that different services should not
share access to the same data (see Section 5.1.3.1). However, as discussed in Chapter 4,
one service might have multiple interfaces that provide shared access to the data owned
by the super ordinate service. In addition, the code base of independent services should be
structured in a way such that there are no cross-dependencies between the different
service implementations. If we apply this definition to the Intelligent Finance situation, it
becomes clear that the banking engine really represents one large service with multiple
interfaces but not multiple independent services. In effect, this has created a somewhat
monolithic service, with some disadvantages. In the Intelligent Finance case, the key
disadvantages are dependencies of the code base behind the different service interfaces:
these dependencies complicate the maintenance of individual services because work
cannot easily be split into individual tasks. In addition, relatively complex test
environments are required. If the different service interfaces were truly independent
services, much less complex development and test setups could be used.

Intelligent Finance has recognized this challenge and has significantly invested in the
breaking up of the monolithic service architecture into services that are truly independent
on the code as well as the data level. The resulting more loosely coupled service design has
helped tothe s significantly enhance maintenance productivity and the ability to introduce
new functionality much more quickly.

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

17.4. Lessons Learned, Benefits, and Perspectives
Probably the most important lesson learned in the project was that putting a
Service-Oriented Architecture in place requires not only a sound technical design but also a
project management initiative that supports the technical architecture on the project level.
The XML Tsardom that was established in the early phase of the project was a key
management tool for coordinating the development of a large set of technical interfaces
that spanned 23 different work streams. In effect, the concept of the XML Tsardom as
deployed by Intelligent Finance adopted many of the concepts that we have outlined in our
discussion on SOA as a driver for project management in Chapter 13.

Another interesting observation is related to the evolution of the design of the central
banking engine service: During the development phase of the project, priorities were very
different than during the following maintenance and enhancement phase. The initially
relatively tightly coupled architecture made a lot of sense during the development phase,
providing the different frontend developers with an easy-to-use, ubiquitous interface.
However, the same design became more problematic during the maintenance phase, which
required a much more loose coupling. This led to the break-up of the initial service design
into multiple independent services, which helped reduce dependencies and provide the
maintenance and enhancement process with much higher agility.

Finally, it is interesting to observe that about 90% of the functionality that exists today
was developed in the first nine months of 2000. The focus today is on maintenance,
third-party integration, and increasing system agility. The original technical and functional
design provides an excellent foundation for these activities. The key architecture decisionin
particular the decision for the Service-Oriented Architectureare still valid today and have
provided Intelligent Finance with one of the most advanced IT architectures in the banking
world.

URLs

www.if.com

http://www.if.com/aboutus/media/keymilestones.asp

http://www.if.com/aboutus/media/press2004.asp

http://www.vision.com/clients/client_stories/if.html

http://www.actiontech.com/library/Documents/GetDocs.cfm?ID=INTELLEXEC

http://www.lynx-fs.com/cms_view/news_details_all.asp?article_ref=46

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.if.com
http://www.if.com/aboutus/media/keymilestones.asp
http://www.if.com/aboutus/media/press2004.asp
http://www.vision.com/clients/client_stories/if.html
http://www.actiontech.com/library/Documents/GetDocs.cfm?ID=INTELLEXEC
http://www.lynx-fs.com/cms_view/news_details_all.asp?article_ref=46
http://www.processtext.com/abcchm.html
http://www.if.com/aboutus/media/keymilestones.asp
http://www.if.com/aboutus/media/press2004.asp
http://www.vision.com/clients/client_stories/if.html
http://www.actiontech.com/library/Documents/GetDocs.cfm?ID=INTELLEXEC
http://www.lynx-fs.com/cms_view/news_details_all.asp?article_ref=46
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

2PC 2nd
 distributed 2PC
 avoiding 2nd
 client controlled transactions 2nd 3rd
 implicit application level protocol 2nd 3rd
 server controlled transactions 2nd 3rd
 limitations
 discontinuous networks
 integration of legacy systems and packaged applications
 lack of support for long-lived transactions
 organizational challenges
 performance
2PC (Two-Phase Commit Protocol)
_Ref62470922
_Ref62470929

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstraction
 components
 functional decomposition
access control lists (ACLs)
access layers
 binding design rules
ACID (atomicity, consistency, isolation, durability)
ACID transactions
 limitations of
 integration of legacy systems and packaged applications
 lack of support for long-lived transactions
 organizational challenges
 performance
ACLs (access control lists
ADA
ADA programming language
adapters
 intermediary services
adding
 service orientation
 to project management methodologies
additional runtime features
 distribution techniques
ADO DataSets
ADO DiffGrams
agility 2nd 3rd
 change requests
 IT
application frontends
 SOAs 2nd
application heterogeneity
application landscape
application level protocol
 distributed 2PC 2nd 3rd
application servers 2nd
applications
 multi-channel applications 2nd 3rd
 fundamental SOA 2nd
 process-enabled SOAs 2nd 3rd 4th 5th
 service facades 2nd 3rd
architects
 perspective of SOAs
 SOA architects [See SOA architects]
architectural roadmap
 fundamental SOA
architecture 2nd 3rd
 BPM
 CSG
 asynchronous integration with EBI 2nd 3rd 4th
 Bulk Integration Infrastructure 2nd
 choreography 2nd
 contracts
 management 2nd
 repositories
 security 2nd
 service interfaces
 synchronous integration with CSIB 2nd 3rd
 Deutsche Post case study 2nd 3rd 4th
 enterprise architecture
 versus standards 2nd 3rd
 Intelligent Finance 2nd 3rd
 multichannel architecture
 of enterprise software 2nd 3rd
 requirements of 2nd 3rd 4th
architecture board
 service repository
architecture boards
architecture roadmap
 fundamental SOA 2nd 3rd 4th 5th 6th 7th 8th
 networked SOA 2nd 3rd 4th 5th 6th 7th
 process-enabled SOAs 2nd 3rd 4th 5th 6th 7th
archtectural roadmap
 networked SOA
archtiectural roadmap
 process-enabled SOAs
asynchronous communication 2nd
 coupling
asynchronous integration
 with EBI 2nd 3rd 4th
atomicity
auditing
authenticating
 against SOA
authentication 2nd 3rd 4th 5th 6th
 and middleware 2nd 3rd 4th 5th 6th
 creating
 SOAP 2nd 3rd 4th
authorization 2nd 3rd 4th 5th 6th
 dynamic authorization
 static authorization
automated test tools
automicity, consistency, isolation, durability [See ACID]
availability 2nd 3rd 4th 5th 6th
 CICS 2nd
 CORBA
 EJBs 2nd 3rd 4th
 in a heterogeneous SOA 2nd
 of enterprise software
 Web Services 2nd 3rd
 wrapped legacy applications 2nd
avoiding
 distributed 2PC 2nd
 client controlled transactions 2nd 3rd
 implicit application level protocols 2nd 3rd
 server controlled transactions 2nd 3rd
 exposing transaction logic to service clients

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

B2B 2nd 3rd 4th 5th 6th 7th
 location transparency
 security infrastructures
 stateless semantics
B2B (business-to-business)
B2B integration
Baan
backers
 success of SOAs 2nd
banking engine services
 Intelligent Finance 2nd
basic layer
basic services 2nd
 data-centric services 2nd 3rd 4th
 Intelligent Finance
 logic-centric services 2nd 3rd
BDM
 Deutsche Post
BDM (Business Domain Model)
beans
 stateless session beans
Berkeley
 r-tools suite
BII (Bulk Integration Infrastructure)
billing
 execution containers
binding
 development-time binding
 runtime binding 2nd
 service binding
binding design rules
 access layers
Boehm, Barry
 Spiral Model
bonus systems
BookAndBill 2nd
Booking process
booking process
bottom-up code generation 2nd 3rd
BPEL4WS (Business Process Execution Language for Web Services)
BPM 2nd 3rd
 archecture of
 combining
 with SOA and MOA 2nd 3rd
 overview of
 modeling languages 2nd 3rd
 process integrity 2nd 3rd
 process-enabled SOAs 2nd
 core business logic versus process control logic 2nd 3rd 4th
 design implications 2nd
 The Third Wave (s/b ital)
 versus BPMS 2nd
 vision 2nd 3rd 4th 5th
BPM (Business Process Management) 2nd
BPML (Business Process Modeling Language)
BPMN
BPMN (Business Process Modeling Notation)
BPMS
 versus BPM 2nd
 when to choose 2nd 3rd 4th
BPMS (Business Process Management System)
BPR (Business Process Reengineering)
budgets
 success of SOAs 2nd
Bulk Integration Infrastructure 2nd 3rd 5th 6th [See BII]
business computing 2nd 3rd 4th
 SAP
 service-orientation
 Wal-Mart
Business Domain Model (BDM)
business exceptions
business functionality
 complexity
business impact
 CSG 2nd
 Deutsche Post 2nd 3rd 4th
 Intelligent Finance 2nd
 Greenfield Project 2nd
 IF.com success story
 offsetting
 Winterthur 2nd
business infrastructure
 motivation for creating SOAs 2nd
business level
 cost savings 2nd
business logic
 SOA
 business logic
Business Process Execution Language for Web Services (BPEL4WS)
Business Process Management [See BPM]
Business Process Management System [See BPMS]
Business Process Modeling Language [See BPML]
Business Process Modeling Notation [See BPMN]
Business Process Reengineering [See BPR]
business processes
 complexity
business projects
 versus IT projects
business rules
business services
 versus SOA infrastructure
business whitepapers
business-to-business [See B2B]

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

callbacks
callbacks and polling services
callbacks and queues
Carr, Nicolas G
case studies
 Credit Suisse Group [See CSG]
 Deutsche Post [See Deutsche Post]
 HBoS [See case studies;HBoS]
 Winterthur [See Winterthur]
central repositories
centralized banking engine service
CEO
 perspective of SOAs
Champy, James
change
 IT_s ability to change
change requests
 agility
characteristics
 of enterprise software 2nd 3rd
choosing
 BPMS 2nd 3rd 4th
 granularity
 for transactional steps 2nd 3rd 4th
choreography
 CSG 2nd
CICS
 availability 2nd
 scalability 2nd
CICS (Customer Information Control System)
CICS (Customer Information Control Systems)
CICS log manager
CICS Transaction Gateway (CTG)
CIO
 conflicts of interests
 perspective of SOAs
Class-Responsibility-Collaboration (CRC)
classification 2nd 3rd
client controlled transactions 2nd 3rd
clients
 fat clients 2nd 3rd 4th
clustering
CM (configuration management)
co-browsing
COBOL (Common Business Oriented language)
 functional decomposition
CODASYL (Conference on Data Systems Languages)
code generation 2nd 3rd
 bottom-up approach 2nd 3rd
 top-down approach 2nd
 with MDA 2nd 3rd 4th
combining
 SOA, MOA, and BPM 2nd 3rd
 transaction chains with compensating transactions
Commodore PET
Common Business Oriented Language [See functional decomposition;COBOL]
Common Object Request Broker Architecture [See CORBA]
communication
 asynchronous communication [See asynchronous communication]
 communication middleware [See communication;communication middleware]
 minimizing resources for communication
 simulated synchronous communication
 synchronous communication [See synchronous communication]
communication middleware framework 2nd 3rd
 application servers 2nd
 Distributed Objects 2nd 3rd
 MOM 2nd 3rd 4th
 email
 RPCs 2nd 3rd
 transaction monitors 2nd 3rd
communication modes
compensating logic 2nd 3rd 4th
compensating transactions
 combining with transaction chains
compensation transactions 2nd
complexity 2nd
component programming
components
concurrency control
 optimisitc concurrency control 2nd 3rd 4th 5th
 example 2nd 3rd 4th 5th
 pessimistic concurrency control
 example 2nd 3rd
Conference on Data Systems Languages (CODASYL)
configuration management
 challenges for 2nd 3rd
 recommendations for the SOA integration team 2nd 3rd 4th 5th
configurations
 logging 2nd 3rd
 runtime configurations
confirm itinerary
conflicts of interest
 stakeholders 2nd 3rd 4th 5th 6th 7th 8th
consistency
consolidated logs
containers
contracts
 CSG
 Deutsche Post case study
 Intelligent Finance
 2nd 3rd [See service contracts]
 SOA 2nd
 Winterthur 2nd 3rd
CORBA 2nd
 availability
 scalability
 Winterthur
CORBA (Common Object Request Broker Architecture)
CORBA (OMG)
CORBA IDL
core business logic 2nd
cost effectiveness
 service
cost savings 2nd
 at business level 2nd
 IT 2nd 3rd
coupling
 loose coupling versus tight coupling 2nd 3rd 4th 5th 6th
CRC (Class-Responsibility-Collaboration)
create invoice
Credit Suisse
Credit Suisse Group [See CSG]
Credit Suisse Information Bus (CSIB)
CRM (Customer Relationship Management System)
CRM (Customer Relationship Management)
cross-container integration 2nd 3rd
CSG
 implementing SOA 2nd
 processes and structures 2nd 3rd 4th
 project management 2nd 3rd
 repositories 2nd
 lessons learned from implementing SOA 2nd 3rd
 technology
 architecture 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
CSG (Credit Suisse Group) 2nd 3rd
 project scope 2nd
 business impact 2nd
 technology impact 2nd 3rd 4th 5th
CSIB
 synchronous integration 2nd 3rd
CSIB (Credit Suisse Information)
CTG (CICS Transaction Gateway)
cursor stability
Customer Information Control System [See CICS]
Customer Information Control Systems [See CICS]
Customer Relationship Management
Customer Relationship Management (CRM)
Customer Relationship Management Systems (CRM)
customer retention service

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Dahl, Ole-Johan
data
 SOA
data access services
data integrity
 user-defined data integrity
 versus process integrity
data-centric services 2nd 3rd 4th
databases
DCE (Distributed Computing Environment) 2nd
debugging
decomposition
decoupling
 public enterprise services
decoupling from technology
decoupling of functionality and technology
 requirements of enterprise software architecture
design
 BPM and process-enabled SOAs 2nd
Design in Action (DIA)
designing
 authentication
 for small devices 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Deutsche Post 2nd 3rd
 BDM
 implementing SOA 2nd
 processes and structures 2nd 3rd 4th 5th 6th
 project management 2nd
 service registry 2nd
 project scope 2nd
 business impact 2nd 3rd 4th
 technology impact 2nd
 results of implementing SOA 2nd 3rd
 SBB
 SSB
 technology
 architecture 2nd 3rd 4th
 contracts
 management
 repositories
 security
 service interfaces
Deutsche Post World net
development processes
 motivation for creating SOAs
development-time binding
DIA (Design in Action)
discontinuous networks
 limitations of 2PC
dispatching
 execution containers
distributed 2PC
 avoiding 2nd
 client controlled transactions 2nd 3rd
 implicit application level protocol 2nd 3rd
 server controlled transactions 2nd 3rd
distributed computing 2nd 3rd 4th 5th 6th
 SOAP
 XML
Distributed Computing Environment [See DCE]
Distributed Computing Environment (DCE)
distributed logging 2nd 3rd 4th 5th
Distributed Objects 2nd 3rd
distribution techniques
 heterogeneity 2nd
 additional runtime features
 communication modes
 products
distribution technology
 service-orientation
divide and conquer strategies 2nd
document-centric messages 2nd
documentation
 service documentation
domain
domain inconsistencies
domain-specific business services
drivers
 test drivers
durability
dX method

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

e-Platform 2nd
EAI 2nd
 service enablement 2nd 3rd 4th 5th
 service repositories
 service stability 2nd 3rd 4th
 SOAs
 upgrade ability 2nd 3rd 4th
EAI (Enterprise Application Integration) 2nd
EBI
 asynchronous integration 2nd 3rd 4th
EBI (Event Bus Infrastructure
EBI (Event Bus Infrastructure)
eCommerce
EDMs (Enterprise Data Models)
EJB (Enterprise Java Beans)
 containers
EJBs
 availability 2nd 3rd 4th
 scalability 2nd 3rd 4th
email
embedded messages [See payload semantics]
encapsulation
 components
Encina
encryption 2nd 3rd
enterprise applicatioin integration
Enterprise Application Integration [See EAI]
Enterprise Application Integration (EAI)
Enterprise Data Models (EDMs)
enterprise IT renovation roadmap 2nd 3rd 4th
enterprise IT renovation roadmaps
Enterprise Java Beans
Enterprise Java Beans (EJB)
enterprise layer
Enterprise Resource Planning [See ERP]
Enterprise Resource Planning (ERP)
Enterprise Resources Planning [See ERP]
Enterprise Service Bus
enterprise software
 architecture
 versus standards 2nd 3rd
 architecture of 2nd 3rd
 requirements of 2nd 3rd 4th
 availability of
 characteristics of 2nd 3rd
Enterprise Software Bus
enterprise software systems
 lack of agility and inefficiency 2nd 3rd 4th
enterprise-level software project management
entity
entity relationship models [See ER]
entropy
ER (entity relationship models)
ERP (Enterprise Resource Planning) 2nd
ERP (Enterprise Resources Planning
error handling
 idempotent operations 2nd
error reporting 2nd
establishing
 project management methodologies 2nd 3rd 4th
 SOA-driven project management 2nd 3rd 4th
Event Bus Infrastructure (EBI) 2nd
evolution
 motivation for creating SOAs 2nd 3rd
example scenarios
 travel itinerary management 2nd 3rd
examples
 of optimistic concurrency control 2nd 3rd 4th 5th
 of pessimisstic concurrency control 2nd 3rd
examples scenarios
 passenger check-in scenario 2nd 3rd
exceptions
 out of stock exceptions
execution containers
 cross-container integration 2nd 3rd
 logging
 message transformation
 security
expansion stages
 fundamental SOA 2nd 3rd 4th
 networked SOA 2nd 3rd 4th 5th 6th 7th
 process-enabled SOAs 2nd 3rd 4th 5th 6th 7th
exposing transaction logic to service clients
Extreme Programming (s/b ital)

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

facades
 intermediary services 2nd 3rd 4th
failure
 example of SOA failure 2nd 3rd 4th
failures 2nd
 auditing
 distributed logging 2nd 3rd 4th 5th
 error reporting 2nd
 fatal failures
 in individual process steps
 logging [See logging]
fat clients 2nd 3rd 4th
fatal failures
feedback
 motivation for creating SOAs 2nd
File Transfer Protocol [See FTP]
fine-grained interaction patterns
 stateful session beans
Fingar, Peter
fire-and-forget RPC
flexibility
 requirements of enterprise software architecture
frameworks
 logging 2nd 3rd
 sign-on frameworks
FTP (File Transfer Protocol)
functional decomposition
 COBOL
 Pascal
functional departments
 perspective of SOAs
functional programming
functional testing
functionality-adding services
 intermediary services 2nd
fundamental SOA 2nd 3rd 4th 5th 6th 7th 8th 9th
 multi-channel applications 2nd

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

geographic information systems (GIS)
GIS (geographic information systems)
goals
 of SOA
granularity
 choosing for transactional steps 2nd 3rd 4th
 software artifacts
Greenfield Project
 Intelligent Finance 2nd

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Halifax Bank of Scotland [See case studies;HBos]
Hammer, Michael
hardware buses [See also software buses]
HBoS (Halifax Bank of Scotland)
 Intelligent Finance [See Intelligent Finance]
heterogeneity
 and security 2nd 3rd 4th 5th
 distribution techniques 2nd
 additional runtime features
 communication modes
 products
horizontal slicing
 versus vertical slicing 2nd
hub-and-spoke

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IAD (Iterative Application Development)
IBM
 MQSeries 2nd
IBM PC
IBM WebSphere MQ
ideal worlds
 SOA specifics 2nd 3rd 4th
 structures and processes 2nd 3rd 4th 5th 6th
idempotent
idempotent update operations 2nd 3rd
 error handling 2nd
 sequence numbers 2nd
IDL (Interface Definition Language)
If.com
 Intelligent Finance
IIS (Internet Information Server)
implementation
 SOA
implementing
 SOA at CSG 2nd
 processes and structures 2nd 3rd 4th
 project management 2nd 3rd
 repositories 2nd
 SOA at Deutsche Post 2nd
 processes and structures 2nd 3rd 4th 5th 6th
 project management 2nd
 service registry 2nd
 SOA at Intelligent Finance
 project management 2nd 3rd 4th
 repositories 2nd
 XML 2nd
 SOA at Winterthur 2nd
 processes and structures 2nd 3rd
 project management 2nd
 repositories 2nd
IMS (Information Management System)
inconsistencies
 domain inconsistencies
 process inconsistencies
independence from technology 2nd 3rd
Information Management System [See IMS]
integration 2nd
 asynchronous integration
 with EBI 2nd 3rd 4th
 complexity
 synchronous integration
 with CSIB 2nd 3rd
integration of legacy systems and packaged applications
 limitations of 2PC
 limitations of ACID transactions
integration of purchased software
Integration Spaghetti
integrity
 business exceptions
 message integrity 2nd
 process integrity [See process integrity]
 special cases
 technical failures
 versus business exceptions 2nd
Intelligent Finance
 architecture
 banking engine services 2nd
 basic services
 implementing SOA
 project management 2nd 3rd 4th
 repositories 2nd
 XML 2nd
 lessons learned from implementing SOA 2nd
 project schedule 2nd
 project scope
 business impact 2nd 3rd 4th 5th 6th
 technology impact 2nd 3rd 4th 5th 6th
 service layers 2nd 3rd
 technology
 architecture 2nd
 contracts
 repositories
 service interfaces 2nd
interaction diagram showing check-in process for a Web application
Interface Definition Language [See languages;IDL]
interface semantics 2nd
 coupling
 versus payload semantics 2nd 3rd
 document-centric messages 2nd
interfaces
 SOA
intermediary layer
intermediary service
 BookAndBill 2nd
intermediary services
 adapters
 facades 2nd 3rd 4th
 functionality-adding services 2nd
 technology gateways 2nd
Internet Information Server [See IIS]
interoperability
 off-the-shelf load balancers
Interoperable Object References
isolation
IT
 agility
 cost savings 2nd 3rd
 organizing 2nd
IT programs
 versus IT project management
IT project management
 versus IT programs
IT projects
 versus business projects
IT renovation roadmap
IT steering committee
IT Strategy Mail
Iterative Application Development (IAD)

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J.D. Edwards
J2EE 2nd
 software buses
J2ME MIDP 2.0
J2ME SOAP
JAAS (Java Authorization and Authentication Framework)
jars
 Intelligent Finance
Java Authorization and Authentication Framework (JAAS)
Java Connector Architecture (JCA)
JCA (Java Connector Architecture)
Just-in-Time production

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key performance indicator (KPI)
KPI (key performance indicator)

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

lack of support for long-lived transactions
 limitations of 2PC
 limitations of ACID transactions
languages
 COBOL
 CORBA
 IDL
 modeling langues
 BPM 2nd 3rd
 MODULA
 Pascal
 SIMULA
layers 2nd 3rd 4th 5th
learning
legacy software
leveraging
 SOA to decompose complex systems
 thin thread model 2nd 3rd
 vertical versus horizontal slicing 2nd
 SOA to drive development iterations 2nd
 divide and conquer strategies 2nd
 managing parallel iterations 2nd 3rd
limitations
 of 2PC
 discontinuous networks
 integration of legacy systems and packaged applications
 lack of support for long-lived transactions
 organizational challenges
 perfoormance
 of ACID transactions
 integration of legacy systems and packaged applications
 lack of support for long-lived transactions
 organizational challenges
 performance
load balancers
 off-the-shelf load balancers
 interoperability
local logging
location transparency
 B2B
Log Services
log traces
logging
 configurations 2nd 3rd
 distributed logging 2nd 3rd 4th 5th
 execution containers
 frameworks 2nd 3rd
 local logging
 transaction boundaries 2nd 3rd
 transaction logs
 transaction monitors
logging and tracing
 process integrity 2nd 3rd
logic
 compensating logic 2nd 3rd 4th
 core business logic
 process control logic
 process logic [See process logic]
logic-centric services 2nd 3rd
logical integration
logs
 consolidated logs
loose coupling 2nd 3rd 4th 5th 6th 7th

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

maintainability
 requirements of enterprise software architecture
maintenance
 complexity
Manage Evolution
management
 CSG 2nd
 Deutsche Post case study
 Winterthur 2nd 3rd
managing [See also organizing]
 parallel iterationis 2nd 3rd
 service repository
Manhattan Project
Manifesto for Agile Software Development (s/b ital)
Manugistics
Market Units of Winterthur
Martin, James
 RAD
Martin, Robert
 dX method
MDA
 code generation 2nd 3rd 4th
MDA (Model Driven Architecture) 2nd
message integrity 2nd
message queuing systems
Message Queuing systems
message transformation
 execution containers
Message-Oriented Middleware [See MOM]
messages
 document-centric messages 2nd
Meta buses
meta buses
 creating
Meta-Object Facility [See MOF]
Microsoft ASP (Active Server Pages)
middleware
 authentication 2nd 3rd 4th 5th 6th
middleware heterogeneity 2nd
minimizing
 resources for communication
 on small devices
mitigating
 risk
 motivation for creating SOAs 2nd 3rd 4th 5th
MMS (multimedia message service)
MOA
 combining
 with SOA and BPM 2nd 3rd
Model Driven Architecture [See MDA]
modeling languages
 BPM 2nd 3rd
MODULA
modularization and component programming
MOF (Meta-Object Facility)
MOM 2nd 3rd 4th
 email
 synchronous communication
MOM (Message-Oriented Middleware)
monitors
 TP monitors
motivation 2nd 3rd
motivation for creating SOAs 2nd 3rd 4th
 agility 2nd 3rd
 business infrastructure 2nd
 cost savings 2nd
 at business level 2nd
 IT 2nd 3rd
 efficient development processes
 evolutionary approach 2nd 3rd
 feedback from 2nd
 independence from technology 2nd 3rd
 mitigating risk 2nd 3rd 4th 5th
 reuse 2nd
MQSeries 2nd
MS Visual Basic
 VBX components
multi-channel applications 2nd 3rd
 fundamental SOA 2nd
 process-enabled SOAs 2nd 3rd 4th 5th
 service facades 2nd 3rd
multichannel architecture
multilevel transactions
multimedia message service (MMS)
Myers
mySAP

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Naming Services
 ORB
nested transactions
NetWare Loadable Modules (NLM)
network SOA
networked SOA 2nd 3rd 4th 5th 6th 7th
NLA (Non Life Applications)
NLM (NetWare Loadable Modules)
Non Life Applications (NLA)
Norwegian Computing Center
Novell
 NetWare Loadable Modules (NLM)
Nygaard, Kristen

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object Management Group (OMG)
object orientation
Object Request Broker [See ORB]
object-oriented programming 2nd
objects
off-the-shelf load balancers
 interoperability
offsetting
 Intelligent Finance
OLE_LINK1
OLTP (Online Transaction Processing)
OMG
 CORBA
OMG (Object Management Group)
Online Transaction Processing [See OLTP]
operating systems
 UNIX
operations
 update operations 2nd 3rd
 error handling 2nd
 sequence numbers 2nd
optimisitc concurrency control 2nd 3rd 4th 5th
 example 2nd 3rd 4th 5th
Oracle
ORB
 Distributed Objects
 Naming Services
ORB (Object Request Broker)
organizational challenges
 limitations of 2PC
 limitations of ACID transactions
organizational roadmaps 2nd
organizational SOA roadmaps 2nd 3rd 4th
organizing
 IT 2nd
orientation
 service orientation
out of stock exceptions
outside intervention

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

parallel iterations
 managing 2nd 3rd
Pascal
passenger check-in scenario 2nd 3rd
payload semantics 2nd
 coupling
 versus interface semantics 2nd 3rd
 document-centric messages 2nd
peer-programming
PeopleSoft
performance
 limitations of 2PC
 limitations of ACID transactions
persistent queues 2nd
pessimistic concurrency control
 example 2nd 3rd
PIMs (Platform Independent Models)
Platform Independent Models (PIMs)
Platform Specific Models [See PSMs]
presentation layer
process and desktop intergration
process control logic
process inconsistencies
process integrity
 2PC 2nd
 ACID transactions 2nd 3rd
 BPM 2nd
 BPMs
 distributed 2PC
 logging and tracing 2nd 3rd
 multilevel transactions
 nested transactions
 persistent queues 2nd
 SAGAs 2nd
 SOA-driven project management 2nd 3rd 4th
 transaactional steps 2nd
 transaction chains 2nd
 transaction monitors 2nd 3rd
 versus data integrity
 Web service standards 2nd 3rd
process layer
process logic 2nd 3rd
process management
process orientation
 BPM
process-centric service
process-centric services 2nd 3rd 4th
process-enabled SOAs 2nd 3rd 4th 5th 6th 7th 8th
 BPM 2nd
 core business logic versus process control logic 2nd 3rd 4th
 design implications 2nd
 multi-channel applications 2nd 3rd 4th 5th
processes
 implementing SOA
 at Deutsche Post 2nd 3rd 4th 5th 6th
 implementing SOA at CSG 2nd 3rd 4th
 implementing SOA at Winterther 2nd 3rd
 in an ideal world 2nd 3rd 4th 5th 6th
Product Lifecycle Management
products
programming paradigms
 component programming
 functional decomposition
 functional programming
 object-oriented programming 2nd
 service-orientation
project control elements
 SOA artifacts 2nd 3rd 4th
project definitions
 including service designs 2nd 3rd
project management
 implementing at Intelligent Finance 2nd 3rd
 architecture boards
 DIA
 IT steering committee
 work streams
 XML tsars 2nd 3rd
 implementing SOA
 at Deutsche Post 2nd
 implementing SOA at CSG 2nd 3rd
 implementing SOA at Winterthur 2nd
project management methodologies
 adding service orientation to
 configuration management
 challenges for 2nd 3rd
 recommendations for the SOA integration 2nd 3rd 4th 5th
 establishing 2nd 3rd 4th
 SOA-driven project management 2nd 3rd 4th
 including service designs in the 2nd 3rd
 leveraging SOA to decompose 2nd 3rd 4th 5th 6th
 leveraging SOA to drive 2nd 3rd 4th 5th 6th 7th
 process integrity 2nd 3rd 4th
 SOA artifacts as project control 2nd 3rd 4th
 testing 2nd 3rd 4th 5th 6th 7th 8th
project managers
 perspective of SOAs
project schedule
 Intelligent Finance 2nd
project scope
 CSG 2nd
 business impact 2nd
 technology impact 2nd 3rd 4th 5th
 Deutsche Post 2nd
 business impact 2nd 3rd 4th
 technology impact 2nd
 Intelligent Finance
 business impact 2nd 3rd 4th 5th 6th
 technology impact 2nd 3rd 4th 5th 6th
 Winterthur
 business impact 2nd
 technology impact 2nd 3rd 4th 5th 6th
projects
 success of SOAs 2nd
PROLOG
protagonists
 recommendations for 2nd 3rd
proxy users
PSMs (Platform Specific Models)
public enterprise services 2nd

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QoS (Quality of Service)
Quality of Service [See QoS]
queues
 persistent queues 2nd

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

r-tools suite
R/2
RAD (Rapid Application Development)
Rapid Application Development (RAD)
RAS (Reliability/Availability/Serviceability)
read stability
real world SOAs
 example of failure 2nd 3rd 4th
 example of success 2nd 3rd
recommendations
 for SOA integration team 2nd 3rd 4th 5th
 for SOA protagonists 2nd 3rd
reducing
 risk 2nd
Reengineering the Corporation (s/b ital)
refactoring
 enterprise software
 architecture
referential integrity
regression test environments
relational databases
Reliability/Availability/Serviceability [See RAS]
remote procedure call system
 SUN-RPC standard
Remote Procedure Calls [See RPCs]
remoteness
Rendezvous
repeatable read
repositories
 CSG
 Deutsche Post case study
 implementing at Intelligent Finance 2nd
 implementing SOA at CSG 2nd
 implementing SOA at Winterthur 2nd
 Intelligent Finance
 Winterthur 2nd 3rd
requirements
 of enterprise software architecture 2nd 3rd 4th
return on investment (ROI)
reusability
 requirements of enterprise software architecture
reuse 2nd 3rd
risk
 reducing 2nd
risk analysis
risk-mitigating effect
 motivation for creating SOAs 2nd 3rd 4th 5th
roadmaps
 enterprise IT renovation roadmap [See enterprise IT renovation roadmap]
 organizational roadmaps 2nd
 organizational SOA roadmaps 2nd 3rd 4th
 technical roadmaps
ROI (return on investment)
RosettaNet
RPC-style interfaces
RPCs 2nd 3rd
 fire-and-forget
RPCs (Remote Procedure Calls)
runtime binding 2nd
runtime configuration
runtime service discovery based on reflection
runtime service lookup by name
runtime service lookup by properties

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SAGAs 2nd
SAML (Security Assertion Markup Language)
SAP 2nd
 R/2
SBB
 Deutsche Post
SBB (Service Backbone)
scalability 2nd 3rd 4th 5th 6th
 CICS 2nd
 CORBA
 EJBs 2nd 3rd 4th
 in a heterogeneous SOA 2nd
 Web Services 2nd 3rd
 wrapped legacy applications 2nd
SCM (Supply Chain Management) 2nd
securing
 SOAs 2nd 3rd 4th 5th
 authentication 2nd 3rd 4th 5th 6th
 authorization 2nd 3rd 4th 5th 6th
 encryption 2nd 3rd
 transport security 2nd 3rd
 trust domains 2nd 3rd
security
 and heterogeneity 2nd 3rd 4th 5th
 CSG 2nd
 Deutsche Post case study
 execution containers
 J2ME MIDP
 lightweight security
 Winterthur 2nd 3rd
Security Assertion Markup Language (SAML)
security infrastructures
 B2B
security solution
semi-transactional steps 2nd 3rd 4th
separating
 SOA services
server controlled transactions 2nd 3rd
service 2nd 3rd 4th
 basic services
 data-centric services 2nd 3rd 4th
 logic-centric services 2nd 3rd
 business computing [See business computing]
 cost effectiveness
 distributed computing 2nd 3rd 4th 5th 6th
 SOAP
 distributed computting
 XML
 intermediary services
 adapters
 facades 2nd 3rd 4th
 functionality-adding services 2nd
 technology gateways 2nd
 Log Services
 Naming Services
 ORB
 process-centric services 2nd 3rd 4th
 SOA [See SOA]
 Web Services
 World Wide Web
service access layer
Service Backbone (SBB)
service binding
service bus
 SOA 2nd
service clients
 exposing to transaction logic
service contracts 2nd
 service contract iterations
service designs
 including in project definitions 2nd 3rd
service dispatchers
service documentation
service enablement
 EAI 2nd 3rd 4th 5th
service facades
 multi-channel applications 2nd 3rd
service interfaces
 CSG
 Deutsche Post case study
 Intelligent Finance 2nd
 versus services 2nd
 Winterthur 2nd 3rd
service layers
 creating layers that replace direct interaction with distributed objects
 Intelligent Finance 2nd 3rd
service orientation
 adding
 to project management methodologies
Service Registry
service registry
 implementing SOA
 at Deutsche Post 2nd
service repositories
 EAI
service repository
 managing
 SOA 2nd 3rd 4th
service requests
service stubs
 code generation
service types
 basic services
 data-centric services 2nd 3rd 4th
 logic-centric services 2nd 3rd
 classification 2nd 3rd
 intermediary services
 adapters
 facades 2nd 3rd 4th
 functionality-adding services 2nd
 technology gateways 2nd
 motivation 2nd 3rd
 process-centric services 2nd 3rd 4th
 public enterprise services 2nd
service-orientation
service-oriented architecture [See SOAs]
Service-Oriented Architecture [See SOA]
services
 domain-specific business services
 implementing business processes
 SOA
 contracts
 data
 implementation
 interfaces
 technical services
 versus service interfaces 2nd
servicing
 execution containers
session-tokens
short message service (SMS)
Short Messages Service [See SMS]
Siebel 2nd
sign-on frameworks
sign-on infrastructures
Simple Object Access Protocol (SOAP)
simplicity
 requirements of enterprise software architecture
SIMULA
simulated synchronous communication
small devices
 designing for 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 minimizing resources for communication
Smith, Howard
SMS (short message service)
SMS (Short Messages Service)
SMS proxy
SOA 2nd 3rd 4th 5th 6th
 application frontends 2nd
 change requests
 agility
 combining
 with BPM and MOA 2nd 3rd
 EAI
 enterprise standards versus architecture
 fundamental SOA 2nd 3rd 4th 5th 6th 7th 8th 9th
 goals of
 heterogeneous SOA
 availability and scalability 2nd
 layers 2nd 3rd 4th 5th
 motivation for creating 2nd 3rd 4th
 agility 2nd 3rd
 business infrastructure 2nd
 cost savings 2nd 3rd 4th 5th 6th 7th
 efficient development processes
 evolutionary approach 2nd 3rd
 feedback 2nd
 independence from technology 2nd 3rd
 mitigating risk 2nd 3rd 4th 5th
 reuse 2nd
 networked SOA 2nd 3rd 4th 5th 6th 7th 8th
 personal perspective of benefit
 architects
 CEOs
 CIOs
 functional departments
 project managers
 software developers
 vendors of standard software
 personal perspective of benefits
 process-enabled SOAs 2nd 3rd 4th 5th 6th 7th 8th
 securing 2nd 3rd 4th 5th
 authentication 2nd 3rd 4th 5th 6th
 authorization 2nd 3rd 4th 5th 6th
 encryption 2nd 3rd
 transport security 2nd 3rd
 trust domains 2nd 3rd
 separating services
 service bus 2nd
 service repository 2nd 3rd 4th
 services
 business logic
 contracts
 data
 implementation
 interfaces
 top-down code generation
SOA (Service-Oriented Architecture)
SOA (service-oriented architecture)
SOA architects
 avoiding distributed 2PC 2nd
 client controlled transactions 2nd 3rd
 implicit application level protocols 2nd 3rd
 server controlled transactions 2nd 3rd
 combining SOA, MOA, and BPM 2nd 3rd
 compensating logic 2nd 3rd 4th
 example scenario
 travel itinerary management 2nd 3rd
 optimistic concurrency control
 example 2nd 3rd 4th 5th
 implementing 2nd 3rd
 pessimistic concurrency control
 example 2nd 3rd
 transactional steps 2nd 3rd 4th 5th
 choosing granularity 2nd 3rd 4th
 semi-transactional steps 2nd 3rd 4th
 update operations 2nd 3rd
 sequence numbers 2nd
 simplifying error handling 2nd
SOA artifacts
 as project control elements 2nd 3rd 4th
SOA boards 2nd 3rd
SOA infrastructure
 versus business services
SOA integration team
 recommendations for 2nd 3rd 4th 5th
SOA roadmaps
 organizational aspects of 2nd 3rd 4th
SOA-driven project management 2nd 3rd 4th
 including service designs in the project definition 2nd 3rd
 leveraging SOA to decompose complex systems
 thin thread model 2nd 3rd
 vertical versus 2nd
 leveraging SOA to drive development iterations 2nd
 divide and conquer 2nd
 managing parallel 2nd 3rd
 process integrity 2nd 3rd 4th
 SOA artifacts as project control elements 2nd 3rd 4th
SOAP
 authentication 2nd 3rd 4th
 document-centric messages
 J2ME SOAP
SOAP (Simple Object Access Protocol)
SOAs
 ideal world
 specifics 2nd 3rd 4th
 structures and processes 2nd 3rd 4th 5th 6th
 multi-channel applications 2nd 3rd
 fundamental SOA 2nd
 process-enabled SOAs 2nd 3rd 4th 5th
 service facades 2nd 3rd
 real world
 example of failure 2nd 3rd 4th
 example of success 2nd 3rd
software architecture 2nd
software artifacts
 granularity
software assets
software buses 2nd 3rd 4th 5th 6th
 CORBA
 Enterprise Service Bus
 J2EE
software components
software developers
 perspective of SOAs
software development
software modules
special cases
specifics
 of SOAs
 in an ideal world 2nd 3rd 4th
Spiral Model
Spowart, Jim
SQL
SSB
 Deutsche Post
stability
 EAI 2nd 3rd 4th
stakeholders
 conflicts of interest 2nd 3rd 4th 5th 6th 7th 8th
standards
 enterprise software
 standards versus architecture 2nd 3rd
Stanford University Network
state comparison
 optimistic concurrency control
 optimistic concurrency controls
stateless semantics
 B2B
stateless session beans
static authorizatioin
stress testing
structures
 implementing SOA
 at Deutsche Post 2nd 3rd 4th 5th 6th
 implementing SOA at CSG 2nd 3rd 4th
 implementing SOA at Winterthur 2nd 3rd
 in an ideal world 2nd 3rd 4th 5th 6th
success
 example of SOA failure 2nd 3rd
 of SOAs
 backers 2nd
 budgets 2nd
 initial project 2nd
 teams
Sun Microsystems
 Enterprise Java Beans
 RPCs
SUN-RPC standard
Supply Chain Management [See SCM]
Supply Chain Management (SCM)
Sybase
synchronous communication 2nd
 coupling
 MOM
synchronous integration
 with CSIB 2nd 3rd
synchrony 2nd 3rd 4th 5th 6th
system managaement
 execution containers
systematic testing

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

teams
 success of SOAs
technical failures
technical integration
technical roadmaps
technical services
technology
 complexity
 CSG
 architecture 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 Deutsche Post
 architecture 2nd 3rd 4th
 contracts
 management
 repositories
 security
 service interfaces
 Intelligent Finance
 architecture 2nd
 contracts
 repositories
 service interfaces 2nd
 Winterthur 2nd 3rd 4th
 contracts 2nd 3rd
 management 2nd 3rd
 repositories 2nd 3rd
 security 2nd 3rd
 service interfaces 2nd 3rd
technology gateways 2nd
technology impact
 CSG 2nd 3rd 4th 5th
 Deutsche Post 2nd
 Intelligent Finance 2nd 3rd 4th 5th 6th
 Winterthur 2nd 3rd 4th 5th 6th
technology whitepapers
telnet
test drivers
test suites
 creating
testing 2nd 3rd 4th 5th 6th 7th 8th
 functional testing
 regression test environments
 creating
 systematic testing
 test suites
 creating
thin thread model 2nd 3rd 4th
thin-thread approach
Tibco Software
 Rendezvous
tight coupling 2nd 3rd 4th 5th 6th
timestamps
 optimistic concurrency control
tokens
 session-tokens
 transaction-tokens
tools
 automated test tools
top-down code generation 2nd
Total Quality Management
TP monitors [See transaction monitors]
TPMs [See transaction monitors]
TPMs (Transaction Processing Monitors)
tracing
transaction boundaries
 logging 2nd 3rd
transaction chains 2nd
 combining with compensating transactions
transaction coordinator
transaction logic
 exposing to service clients
transaction logs
transaction management
 execution containers
transaction monitors 2nd 3rd 4th 5th 6th
 logging
Transaction Processing Monitors [See TPMs]
transaction-tokens
transactional steps 2nd 3rd 4th 5th 6th 7th 8th 9th
 choosing granularity 2nd 3rd 4th
 semi-transactional steps 2nd 3rd 4th
transactions
 ACID transactions 2nd 3rd
 client controlled transactions 2nd 3rd
 compensating transactions 2nd
 multilevel transactions
 nested transactions
 server controlled transactions 2nd 3rd
 Web services-based transaction protocols
transport security 2nd 3rd
tresource managers
trust domains 2nd 3rd 4th
Tuxedo 2nd
Two-Phase Commit Protocol [See 2PC]
TX monitors [See transaction monitors]

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Uber bus
UDDI
UDDI (Universal Description, Discovery and Integration
UN/CEFACT (ebXML)
uncommited read
Universal Description, Discovery and Integration [See UDDI]
UNIX
 workstations
update operations 2nd 3rd
 error handling 2nd
 sequence numbers 2nd
upgrade ability
 EAI 2nd 3rd 4th
user-defined data integrity
users
 proxy users

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

VBX components
vendors of standard software
 perspective of SOAs
version counts
 optimistic concurrency control
vertical slicing
 versus horizontal slicing 2nd
vision
 of BPM 2nd 3rd 4th 5th
VT100 systems

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Wal-Mart
 business computing
Web applications
 building 2nd 3rd 4th 5th 6th 7th 8th
Web Service Definition Language [See WSDL]
Web service standards
 process integrity 2nd 3rd
Web Services
 availability 2nd 3rd
 scalability 2nd 3rd
whitepapers 2nd
 business whitepapers
 technology whitepapers
wincoLink
Winterthur 2nd 3rd 4th
 implementing SOA 2nd
 processes and structures 2nd 3rd
 project management 2nd
 repositories 2nd
 lessons learned from implementing SOA 2nd 3rd 4th
 project scope
 business impact 2nd
 technology impact 2nd 3rd 4th 5th 6th
 technology 2nd 3rd 4th
 contracts 2nd 3rd
 management 2nd 3rd
 repositories 2nd 3rd
 security 2nd 3rd
 service interfaces 2nd 3rd
Wintherthur
Wirth, Niklaus
 Pascal
WMS (Workflow Management System)
work streams
workflow components
Workflow Management Systems [See WMS]
workstations
World Wide Web
 service
wrapped legacy aplications
 availability 2nd
wrapped legacy applications
 scalability 2nd
write-test-cases-before-writing-the-actual-code
WSDL (Web Service Definition Language)

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X/Open DTP (X/Open standard for Distributed Transaction Processing)
X/Open standard for Distributed Transaction Processing [See X/Open DTP]
XA interface
XML
 implementing at Intelligent Finance 2nd
XML tsars 2nd 3rd

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

	Enterprise SOA: Service-Oriented Architecture Best Practices
	Table of Contents
	Copyright
	Praise for Enterprise SOA
	The Coad Series
	Acknowledgments
	About the Authors
	Dirk Krafzig
	Karl Banke
	Dirk Slama

	Foreword
	Reader's Guide
	Who Should Read This Book
	A Roadmap for This Book

	Chapter 1. An Enterprise IT Renovation Roadmap
	Section 1.1. Agony Versus Agility
	Section 1.2. Enterprise Software Is a Different Animal
	Section 1.3. The Importance of Enterprise Software Architectures
	Section 1.4. The Requirements for an Enterprise Software Architecture
	Section 1.5. The Relation of Enterprise Architecture and Enterprise Standards
	Section 1.6. Organizational Aspects
	Section 1.7. Lifelong Learning
	Section 1.8. The Enterprise IT Renovation Roadmap

	Chapter 2. Evolution of the Service Concept
	Section 2.1. Milestones of Enterprise Computing
	Section 2.2. Programming Paradigms
	Section 2.3. Distributed Computing
	Section 2.4. Business Computing
	Section 2.5. Conclusion

	Chapter 3. Inventory of Distributed Computing Concepts
	Section 3.1. Heterogeneity of Communication Mechanisms
	Section 3.2. Communication Middleware
	Section 3.3. Synchrony
	Section 3.4. Interface Versus Payload Semantics
	Section 3.5. Tight Versus Loose Coupling
	Section 3.6. Conclusion

	Part I. Architectural Roadmap
	Chapter 4. Service-Oriented Architectures
	Section 4.1. What Is a Software Architecture?
	Section 4.2. What Is a Service-Oriented Architecture?
	Section 4.3. Elements of a Service-Oriented Architecture
	Section 4.4. Conclusion

	Chapter 5. Services as Building Blocks
	Section 5.1. Service Types
	Section 5.2. Layers on the Enterprise Level
	Section 5.3. Conclusion

	Chapter 6. The Architectural Roadmap
	Section 6.1. The Architectural Roadmap
	Section 6.2. Fundamental SOA
	Section 6.3. Networked SOA
	Section 6.4. Process-Enabled SOA
	Section 6.5. Conclusion

	Chapter 7. SOA and Business Process Management
	Section 7.1. Introduction to BPM
	Section 7.2. BPM and the Process-Enabled SOA
	Section 7.3. Conclusion

	Chapter 8. Managing Process Integrity
	Section 8.1. Data Versus Process Integrity
	Section 8.2. Technical Concepts and Solutions
	Section 8.3. Recommendations for SOA Architects
	Section 8.4. Conclusion

	Chapter 9. Infrastructure of the Service Bus
	Section 9.1. Software Buses and the Service Bus
	Section 9.2. Logging and Auditing
	Section 9.3. Availability and Scalability
	Section 9.4. Securing SOAs
	Section 9.5. Conclusion

	Chapter 10. SOA in Action
	Section 10.1. Building Web Applications
	Section 10.2. Enterprise Application Integration
	Section 10.3. Business-to-Business
	Section 10.4. Fat Clients
	Section 10.5. Designing for Small Devices
	Section 10.6. Multi-Channel Applications
	Section 10.7. Conclusion

	Part II. Organizational Roadmap
	Chapter 11. Motivation and Benefits
	Section 11.1. The Enterprise Perspective
	Section 11.2. The Personal Perspective
	Section 11.3. Conclusion

	Chapter 12. The Organizational SOA Roadmap
	Section 12.1. Stakeholders and Potential Conflicts of Interest
	Section 12.2. The Organizational SOA Roadmap
	Section 12.3. Four Pillars for Success
	Section 12.4. An Ideal World
	Section 12.5. The Real WorldOrganization-Wide Standards
	Section 12.6. Recommendations for the SOA Protagonist
	Section 12.7. Conclusion

	Chapter 13. SOA-Driven Project Management
	Section 13.1. Established Project Management Methodologies
	Section 13.2. SOA-Driven Project Management
	Section 13.3. Configuration Management
	Section 13.4. Testing
	Section 13.5. Conclusion

	Part III. Real-World Experience
	Chapter 14. Deutsche Post AG Case Study
	Section 14.1. Project Scope
	Section 14.2. Implementation
	Section 14.3. Technology
	Section 14.4. Lessons Learned, Benefits, and Perspectives

	Chapter 15. Winterthur Case Study
	Section 15.1. Project Scope
	Section 15.2. Implementation
	Section 15.3. Technology
	Section 15.4. Lessons Learned, Benefits, and Perspectives

	Chapter 16. Credit Suisse Case Study
	Section 16.1. Project Scope
	Section 16.2. Implementation
	Section 16.3. Technology
	Section 16.4. Lessons Learned, Benefits, and Perspectives

	Chapter 17. Halifax Bank Of Scotland: IF.com
	Section 17.1. Project Scope
	Section 17.2. Implementation
	Section 17.3. Technology
	Section 17.4. Lessons Learned, Benefits, and Perspectives

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

