
1

Com S 362: Object-Oriented Analysis and Design

Anti-Patterns

2 Com S 362: Object-Oriented Analysis and Design
2

Com S 362: Object-Oriented Analysis and Design

Recap: Refactoring
 Improve the structure of code

 No value gain at the moment, but
 Easier to add features later
 Less chances of errors in maintenance tasks

 Key is to preserve semantics
 Imprecisely ensure by developing tests
 Also, by code inspection

 Often automated support for common refactorings
 Automated support, less error prone
 Often most general case
 e.g. Eclipse extract method makes all variables parameters
 Limitation of current program analysis techniques

2

3 Com S 362: Object-Oriented Analysis and Design
3

Com S 362: Object-Oriented Analysis and Design

Anti-Patterns
Lessons Learned

from failures
and their remedies.

AntiPatterns:
Vaccinations against

Object Misuse”
[Akroyd 96]

4 Com S 362: Object-Oriented Analysis and Design
4

Com S 362: Object-Oriented Analysis and Design

Example: Spaghetti Code
An undocumented piece of source code

Cannot be extended or modified
Reason: convoluted structure
Effect: significant cost in modification

3

5 Com S 362: Object-Oriented Analysis and Design
5

Com S 362: Object-Oriented Analysis and Design

Symptoms
 Quick demonstration code integrated in the running system
 Obsolete or scanty documentation
 50% time spent learning what the code does
 “Hesitant programmer syndrome”

 Perhaps easier to rewrite this code
 More likely to break it then extend it

 Cannot be reused
 Cannot change the used library/components
 Cannot optimize performance

 Duplication
 “I don’t know what that piece of code was doing, so I rewrote what I

thought should happen, but I cannot remove the redundant code
because it breaks the system.”

6 Com S 362: Object-Oriented Analysis and Design
6

Com S 362: Object-Oriented Analysis and Design

Symptoms in an OO program
Many OO method with no parameters
Suspicious class or global variable
Strange relationships between classes
Process-oriented methods

Objects with process-oriented names
OO advantage lost

Inheritance cannot be used to extend
Polymorphism cannot be used

4

7 Com S 362: Object-Oriented Analysis and Design
7

Com S 362: Object-Oriented Analysis and Design

Net Results
Reached point of diminishing returns

Efforts to maintain >> Efforts to redevelop

8 Com S 362: Object-Oriented Analysis and Design
8

Com S 362: Object-Oriented Analysis and Design

Solution

5

9 Com S 362: Object-Oriented Analysis and Design
9

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Haste

10 Com S 362: Object-Oriented Analysis and Design
10

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Apathy

6

11 Com S 362: Object-Oriented Analysis and Design
11

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Narrow-Mindedness

12 Com S 362: Object-Oriented Analysis and Design
12

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Sloth

7

13 Com S 362: Object-Oriented Analysis and Design
13

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Avarice

14 Com S 362: Object-Oriented Analysis and Design
14

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Ignorance

8

15 Com S 362: Object-Oriented Analysis and Design
15

Com S 362: Object-Oriented Analysis and Design

Root Cause of Anti-Patterns: Pride

16 Com S 362: Object-Oriented Analysis and Design
16

Com S 362: Object-Oriented Analysis and Design

Another Example: The BLOB
Also known as

Winnebago and the God class

Scale: Entire application

General Form:
One class monopolizes the processing
Other classes are data classes

9

17 Com S 362: Object-Oriented Analysis and Design
17

Com S 362: Object-Oriented Analysis and Design

The Design of an Example Blob

18 Com S 362: Object-Oriented Analysis and Design
18

Com S 362: Object-Oriented Analysis and Design

Symptoms of a Blob
Single Class

Large number of attributes
Large number of operations

Unrelated attributes and operations
Overall lack of cohesiveness

Too complex to reuse and test
Expensive to load into memory

Exercise: Explain why?

10

19 Com S 362: Object-Oriented Analysis and Design
19

Com S 362: Object-Oriented Analysis and Design

Refactored Solution
 Identify or categorize related things

Attributes, Operations
Where do these categories naturally belong?

Apply move method, move field refactorings

Remove redundant associations

20 Com S 362: Object-Oriented Analysis and Design
20

Com S 362: Object-Oriented Analysis and Design

Categories in Example Application

11

21 Com S 362: Object-Oriented Analysis and Design
21

Com S 362: Object-Oriented Analysis and Design

Migration in Example Application

22 Com S 362: Object-Oriented Analysis and Design
22

Com S 362: Object-Oriented Analysis and Design

Migration in Example Application

12

23 Com S 362: Object-Oriented Analysis and Design
23

Com S 362: Object-Oriented Analysis and Design

Why Study AntiPatterns?
 Provide a method of efficiently mapping a general

situation to a specific class of solutions

 Provide real world experience in recognizing
recurring problems in the software industry

 Provide a common vocabulary for identifying
problems and discussing solutions.

24 Com S 362: Object-Oriented Analysis and Design
24

Com S 362: Object-Oriented Analysis and Design

The Reference Model

From: http://www.antipatterns.com

13

25 Com S 362: Object-Oriented Analysis and Design
25

Com S 362: Object-Oriented Analysis and Design

Anti-Patterns
 Describes:

Commonly occurring solution to a problem
Solution often leads to negative consequences

 Results from ignorance, lack of experience,
applying good patterns to wrong context, etc

 Purpose of cataloguing:
Recognize
Remedy, often by refactoring

26 Com S 362: Object-Oriented Analysis and Design
26

Com S 362: Object-Oriented Analysis and Design

Describing an Anti-Pattern
 General Form
 Symptoms to recognize general form

How to identify
Example: One big class, a lot unrelated methods
Example: Many methods with no arguments

 Causes that lead to the general form
 lack of design experience

 Refactored solution:
How to change into a healthier solution

Split into smaller classes
 Identify or categorize attributes and operations

14

27 Com S 362: Object-Oriented Analysis and Design
27

Com S 362: Object-Oriented Analysis and Design

Mini Anti-Pattern: Lava Flow
 Also Known As: Dead Code
 Scale: Application
 Refactored Solution Name: Architectural Configuration

Management
 Refactored Solution Type: Process
 Root Causes: Avarice, Greed, Sloth
 Unbalanced Forces: Management of Functionality,

Performance, Complexity
 Anecdotal Evidence: “Oh that! Well Ray and Emil (they’re no

longer with the company) wrote that routine back when Jim
(who left last month) was trying a workaround for Irene’s
input processing code (she’s in another department now,
too). I don’t think it’s used anywhere now, but I’m not really
sure. Irene didn’t really document it very clearly, so we
figured we would just leave well enough alone for now. After
all, the bloomin’ thing works doesn’t it?!”

28 Com S 362: Object-Oriented Analysis and Design
28

Com S 362: Object-Oriented Analysis and Design

15

29 Com S 362: Object-Oriented Analysis and Design
29

Com S 362: Object-Oriented Analysis and Design

Poor Design
 Expensive to analyze, verify, and test. All such

effort is expended entirely in vain and is an absolute
waste. In practice, verification and test are rarely
possible.

 Expensive to load into memory, wasting important
resources and impacting performance.

 Many of the inherent advantages of an object-
oriented design lost. In this case, you lose the
ability to leverage modularization and reuse without
further proliferating the Lava Flow globules.

30 Com S 362: Object-Oriented Analysis and Design
30

Com S 362: Object-Oriented Analysis and Design

Symptoms of Lava Flow
Frequent unjustifiable variables and code

fragments
Undocumented complex code segments

important-looking functions, classes,
These segments don’t clearly relate to the

system architecture.
Very loose, “evolving” system architecture.
Whole blocks of commented-out code with no

explanation or documentation.
Lots of “in flux” or “to be replaced” code areas.

16

31 Com S 362: Object-Oriented Analysis and Design
31

Com S 362: Object-Oriented Analysis and Design

Symptoms of Lava Flow
 Unused (dead) code, just left in.
 Unused, inexplicable, or obsolete interfaces
 If existing Lava Flow code is not removed, it can

continue to proliferate as code is reused in other areas.
 If the process that leads to Lava Flow is not checked,

there can be exponential growth as succeeding
developers, too rushed or intimidated to analyze the
original flows, continue to produce new, secondary
flows as they try to work around the original ones, this
compounds the problem.

 As the flows compound and harden, it rapidly becomes
impossible to document the code or understand its
architecture enough to make improvements.

32 Com S 362: Object-Oriented Analysis and Design
32

Com S 362: Object-Oriented Analysis and Design

Cause
 R&D code placed into production [no configuration management]

 Uncontrolled distribution of unfinished code. Implementation of several trial
approaches toward implementing some functionality. Often single-developer
(lone wolf) written code.

 Lack of architecture

 Repetitive development process
 Goals not clear
 Design decisions not hidden

 Rework, backtrack, and develop prototypes
 Hasty changes, no refactoring

 Architectural scars

 Too costly to analyze the existing code base

17

33 Com S 362: Object-Oriented Analysis and Design
33

Com S 362: Object-Oriented Analysis and Design

How to fix it?
Exercise:

34 Com S 362: Object-Oriented Analysis and Design
34

Com S 362: Object-Oriented Analysis and Design

Functional Decomposition: Exercise
 Also Known As: No Object-Oriented AntiPattern “No

OO” [Akroyd 96]
 Most Frequent Scale: Application
 Refactored Solution Name: Object-Oriented

Reengineering
 Refactored Solution Type: Process
 Root Causes: Avarice, Greed, Sloth
 Unbalanced Forces: Management of Complexity,

Change
 Anecdotal Evidence: “This is our ‘main’ routine,

here in the class called LISTENER.”

18

35 Com S 362: Object-Oriented Analysis and Design
35

Com S 362: Object-Oriented Analysis and Design

Example Functional

Object-
oriented

36 Com S 362: Object-Oriented Analysis and Design
36

Com S 362: Object-Oriented Analysis and Design

Boat Anchor
Piece of software or hardware that serves no

useful purpose on the current project
Often a costly acquisition, which makes the

purchase even more ironic
At acquisition pitch to “decision makers”
No technical evaluation of the product
Significant effort to make it work
After efforts found to be useless

19

37 Com S 362: Object-Oriented Analysis and Design
37

Com S 362: Object-Oriented Analysis and Design

Golden Hammer
 I have a hammer and everything is a nail

38 Com S 362: Object-Oriented Analysis and Design
38

Com S 362: Object-Oriented Analysis and Design

